固体中的介电弛豫(影印版)(经典电介质科学丛书)(Dielectric Relaxation)
分類: 图书,科学与自然,物理学,固体物理学,
品牌: A.K.琼克
基本信息·出版社:西安交通大学出版社
·页码:380 页
·出版日期:2008年
·ISBN:756052706X/9787560527062
·条形码:9787560527062
·包装版本:第1版
·装帧:平装
·开本:16
·正文语种:中文
·丛书名:经典电介质科学丛书
·外文书名:Dielectric Relaxation
产品信息有问题吗?请帮我们更新产品信息。
内容简介《固体中的介电弛豫》是研究固体中介电弛豫现象的专著,被电介质领域的许多研究者奉为经典。作者提出在所有固体介质中存在普适的分数指数弛豫定律,其观点在学术界经历了从不被理解到广泛接受的曲折过程。书中介绍了介质极化的基础知识和介电函数的表述方法,在此基础上讨论了几种理想化模型的的动态响应特征,结合频域响应和时域响应的多种实验现象,总结提出了介电弛豫的多体普适模型。
全书行文流畅、简明扼要,可作为物理、电子、材料、电气等相关专业的教师、研究生和科研人员的参考书。精读此书有助于深入、全面地理解电介质、半导体、电池及其他电子元器件测量中的实验结果。
作者简介A.K.琼克,(A.K.Jonscher,1922—2005),生于波兰华沙,1949年在伦敦大学玛丽皇后学院以一级荣誉学士学位毕业,并在该校Harry Tropper教授的指导下于1952年获得博士学位,1951年起在GEC研究实验室工作,从事半导体器件物理原理方面的研究工作,1962年以Reader身份加入伦敦大学切尔西学院,1965年成为固态电子学教授,1987年成为伦敦大学皇家霍洛威与贝德福德斯学完荣誉教授,1990年受邀担纲IEEE“普适介电响应”杰出怀特海荣誉讲席。琼克教授在介电弛豫研究方面具有很深的造诣,他于1983年和1996年分别出版的学术专著《固体中的介电弛豫》和《普适弛豫定律》,在国际学术界享有盛誉。
姚熹,1935年生于中国江苏苏州。1957年毕业于交通大学电机系,1982年获美国宾夕法尼亚州立大学固态科学博士学位。
1957年至今在西安交通大学任教,1984年起任西安交通大学教授。1989年当选国际陶瓷科学院首批院士。1991年当选中国科学院院士。2002年当选美国陶瓷学会会士。2007年因“在电子陶瓷科学和工程创新方面做出了杰出贡献”当选美国国家工程院外籍院士。
目录
Preface
Useful Physical Constants
Chapter 1
INTRODUCTION
1.1Dielectrics and insulators
1.2The nature of dielectric response
1.3The purpose and scope of the present treatment
References to Chapter 1
Chapter 2 THEPHYSICALANDMATHEMATICALBASISOF DIELECTRIC POLARISATION
2.1Charges, dipoles and chemical bonds
2.2Dielectric polarisation
2.3Polarisation in static electric fields
a)Orientational polarisation - freely floating dipoles
b)Molecular polarisability - induced dipole moment
c)Orders of magnitude of dipole moments and polarisabilities
d)Polarisation by hopping charge carriers
2.4Effect of particle interactions
2.5Time-dependent dielectric response
2.6Frequency-domain response
2.7Permittivity, conductivity and loss
2.8Kramers-Kronig relations
Appendix 2.1Fourier transform of the convolution integral
Appendix 2.2Computer programs for Kramers-Kronig transformation C--* G and G--* C
References to Chapter 2
Chapter 3PRESENTATION OF DIELECTRIC FUNCTIONS
3.1Introduction
3.2Admittance, impedance, permittivity
3.3More complicated equivalent circuits
i)Series R-C in parallel with C~
ii)Resistance in series with parallel G--C combination
iii)Capacitance in series with parallel G--C combination
iv)Two parallel circuits in series
v)Distributed R-C line
3.4Summary of simple circuit responses
3.5Logarithmic impedance and admittance plots
3.6The response of a "universal" capacitor
3.7Representation in the complex permittivity plane
3.8Representation of the temperature dependence
Appendix 3.1Time domain, rotating vectors and frequency domain
Appendix 3.2Inversion in the complex plane
References to Chapter 3
Chapter 4THE DYNAMIC RESPONSE OF IDEALISED PHYSICAL MODELS
4.1Introduction
4.2The harmonic oscillator
4.3An inertialess system with a restoring force
ii)Schottky barriers and p-n junctions
iii)Charge generation~recombination processes
iv)Trapping phenomena
4.8Diffusive transport
4.9Concluding comments
Appendix 4.1The complex susceptibility of an inertialess system with a restoring force
Appendix 4.2Relaxation of "free" charge
References to Chapter 4
Chapter 5EXPERIMENTALEVIDENCEONTHEFREQUENCYR ESPONSE
5.1Introduction
5.2Near-Debye responses
5.3Broadened and asymmetric dipolar loss peaks
a)Polymeric materials
b)Other dipolar systems
c)Dipolar response at cryogenic temperatures
d)Characterisation of dielectric loss peaks
5.4Dielectric behaviour of p-n junctions
5.5Dielectric response without loss peaks
a)Charge carriers in dielectric materials
b)Alternating current conductivity of hopping charges
c)Fast ionic conductors
5.6Strong low-frequency dispersion
5.7Frequency-independent loss
5.8Superposition of different mechanisms
5.9Survey of frequency response information
References to Chapter 5
Chapter 6EXPERIMENTAL EVIDENCE ON THE TIME RESPONSE
6.1The role of time-domain measurements
6.2The significance of loss peaks in the time--domain
6.3The Hamon approximation
6.4Evidence for inertial effects
6.5Long-time behaviour in low-loss polymers
6.6Detection on non-linearities by time--domain measurements
6.7Contribution of charge carriers to the dielectric response
6.8Other charge carrier phenomena
a)Charge injection and surface potential
b)Energy loss arising from the movement of charges
c)Dispersive charge flow
d)Charge carrier systems with strong dispersion
6.9Conclusions regarding time--domain evidence
a)The presence to two power laws
b)The temperature dependence of the universal law
c)Limiting forms of response at "zero" and "infinite" times
d)The Debye "singularity"
e)Time--dom
7.2Distributions of relaxation times (DRT's)
7.3Distributions of hopping probabilities
7.4Correlation function approaches
7.5Local field theories
7.6Diffusive boundary conditions
7.7Interracial phenomena and the Maxwell-Wagner effect
7.8Transport limitation at the boundaries
7.9The need for an alternative approach
References to Chapter 7
Chapter 8THE MANY-BODY UNIVERSAL MODEL OF DIELECTRIC RELAXATION
8.1The conditions for the occurrence of the universalresponse
8.2A descriptive approach to many-body interaction
a)The screened hopping model
b)The role of disorder in the dielectric response
c)The correlated states
d)"Large" and "small" transitions
8.3The infra-red divergence model
a)The inapplicability of exponential relaxation in time
b)Physical concepts in infra-red divergence
c)The Dissado-Hill model of "large" and "small" transitions
d)The small flip transitions
e)Fluctuations or flip-flop transitions
f)The complete analytical development of relaxation
8.4The consequences of the Dissado-Hill theory
a)The significance of the loss peak
b)The temperature dependence of the loss peak
c)Dipole alignment transitions
d)The exponents m and n
e)The temperature dependence of the "flat" loss
f)The narrow range of ac conductivities
8.5Clustering and strong low-frequency dispersion
8.6Energy relations in the many-body theory
a)Stored energy in the static and transient regimes
b)Transfer of energy to the heat bath
c)Dielectric and mechanical loss
8.7The dynamics of trapping and recombination in semiconductors
8.8Dielectric diagnostics of materials
8.9Conclusions
Appendix 8.1The infra-red divergence
References to Chapter 8
Author Index
Subject index
……[看更多目录]
序言Fifty years ago, I was sitting in a class at Jiaotong University inShanghai, China taking a course called " DIELECTRICPHYSICS" lectured by the late Professor Chen Jidan. I was oneof the thirty students sitting in his class taking the course. Thiswas the first time DIELECTRIC study was introduced toChinese Universities. Since then, dielectric study became one ofthe major concerns of the science and technology community ofChina in developing its electrical and electronic engineering.Fifty years past, thousands of students, graduate students,professors, scientists and engineers have been engaged in thestudies and applications of dielectrics in this country. In the pastfifty years, the Xi'an Jiaotong University, Shanghai JiaotongUniversity, Electronic Science and Technological University,Shandong University, Zhongshan University, SichuanUniversity, Nanjing University, Tongji University and theShanghai Institute of Ceramics, the Beijing Institute of Physicsof the Chinese Academy of Sciences were heavily involved indielectric studies and gave their various contributions to thedevelopment of dielectric study in China. Now, China isprobably one of the most important countries in dielectric studiesamong the list of the ex Soviet Union and the United Kingdom.Late Professor Chen was the pioneer and founder ofDIELECTRIC studies in China. The staidness, sureness andsolemnness of his academic attitude are the invaluable treasureof the Chinese dielectric community. I would like to take thechance of writing this preface to pay my sincere respect to thelate Professor Chen.
文摘插图: