时间序列分析及其应用

时间序列分析及其应用  点此进入淘宝搜索页搜索
  特别声明:本站仅为商品信息简介,并不出售商品,您可点击文中链接进入淘宝网搜索页搜索该商品,有任何问题请与具体淘宝商家联系。
  參考價格: 点此进入淘宝搜索页搜索
  分類: 图书,自然科学,数学,概率论与数理统计,

作者: (美)罗伯特沙姆韦 著

出 版 社:

出版时间: 2009-5-1字数:版次: 1页数: 575印刷时间:开本: 大32开印次:纸张:I S B N : 9787510004384包装: 平装目录

1 Characteristics of Time Series

1.1 Introduction

1.2 The Nature of Time Series Data

1.3 Time Series Statistical Models

1.4 Measures of Dependence: Autocorrelation and Cross-Correlation

1.5 Stationary Time Series

1.6 Estimation of Correlation

1.7 Vector-Valued and Multidimensional Series

Problems

2 Time Series Regression and Exploratory Data Analysis

2.1 Introduction

2.2 Classical Regression in the Time Series Context

2.3 Exploratory Data Analysis

2.4 Smoothing in the Time Series Context

Problems

3 ARIMA Models

3.1 Introduction

3.2 Autoregressive Moving Average Models

3.3 Difference Equations

3.4 Autocorrelation and Partial Autocorrelation Functions

3.5 Forecasting

3.6 Estimation

3.7 Integrated Models for Nonstationary Data

3.8 Building ARIMA Models

3.9 Multiplicative Seasonal ARIMA Models

Problems

4 Spectral Analysis and Filtering

4.1 Introduction

4.2 Cyclical Behavior and Periodicity

4.3 The Spectral Density

4.4 Periodogram and Discrete Fourier Transform

4.5 Nonparametric Spectral Estimation

4.6 Multiple Series and Cross-Spectra

4.7 Linear Filters

4.8 Parametric Spectral Estimation

4.9 Dynamic Fourier Analysis and Wavelets

4.10 Lagged Regression Models

4.11 Signal Extraction and Optimum Filtering

4.12 Spectral Analysis of Multidimensional Series

Problems

5 Additional Time Domain Topics

5.1 Introduction

5.2 Long Memory ARMA and Fractional Differencing

5.3 GARCH Models

5.4 Threshold Models

5.5 Regression with Autocorrelated Errors

5.6 Lagged Regression: Transfer Function Modeling

5.7 Multivariate ARMAX Models

Problems

6 State-Space Models

6.1 Introduction

6.2 Filtering, Smoothing, and Forecasting

6.3 Maximum Likelihood Estimation

6.4 Missing Data Modifications

6.5 Structural Models: Signal Extraction and Forecasting

6.6 ARMAX Models in State-Space Form

6.7 Bootstrapping State-Space Models

6.8 Dynamic Linear Models with Switching

6.9 Nonlinear and Non-normal State-Space Models Using Monte Carlo Methods

6.10 Stochastic Volatility

6.11 State-Space and ARMAX Models for Longitudinal Data Analysis

Problems

7 Statistical Methods in the Frequency Domain

7.1 Introduction

7.2 Spectral Matrices and Likelihood Functions

7.3 Regression for Jointly Stationary Series

7.4 Regression with Deterministic Inputs

7.5 Random Coefficient Regression

7.6 Analysis of Designed Experiments

7.7 Discrimination and Cluster Analysis

7.8 Principal Components and Factor Analysis

7.9 The Spectral Envelope

Problems

Appendix A: Large Sample Theory

A.1 Convergence Modes

A.2 Central Limit Theorems

A.3 The Mean and Autocorrelation Functions

Appendix B: Time Domain Theory

B.1 Hilbert Spaces and the Projection Theorem

B.2 Causal Conditions for ARMA Models

B.3 Large Sample Distribution of the AR(p) Conditional Least Squares Estimators

B.4 The Wold Decomposition

Appendix C: Spectral Domain Theory

C.1 Spectral Representation Theorem

C.2 Large Sample Distribution of the DFT and Smoothed Periodogram

C.3 The Complex Multivariate Normal Distribution

References

Index

 
 
免责声明:本文为网络用户发布,其观点仅代表作者个人观点,与本站无关,本站仅提供信息存储服务。文中陈述内容未经本站证实,其真实性、完整性、及时性本站不作任何保证或承诺,请读者仅作参考,并请自行核实相关内容。
 
© 2005- 王朝網路 版權所有 導航