分享
 
 
 

人工智能:一种现代方法(英文版)

  点此进入淘宝搜索页搜索
  特别声明:本站仅为商品信息简介,并不出售商品,您可点击文中链接进入淘宝网搜索页搜索该商品,有任何问题请与具体淘宝商家联系。
  參考價格: 点此进入淘宝搜索页搜索
  分類: 图书,计算机/网络,人工智能,

作者: [英]拉塞尔,[美]诺文 著

出 版 社: 人民邮电出版社

出版时间: 2002-4-1字数: 1342000版次: 1页数: 932印刷时间: 2002-4-1开本:印次:纸张: 胶版纸I S B N : 9787115102027包装: 平装编辑推荐

内容简介

本书在智能Agent的概念框架下,把人工智能中相互分离的领域统一起来。全书主体内容共分为六大部分,即问题解、知识与推理、合乎逻辑的行动、不确定知识与推理、学习,以及通信、感知与行动。本书通过Agent从感知外部环境、到实施行动、并最后对外部环境施加影响的全过程,将这六部分组织起来,形成一个相互联系的整体,使读者对人工智能有一个完整的概念,达到较好的效果。

本书可以作为信息领域及相关领域的高等院校本科生和研究生的教科书或教学参考书,也可以作为相关领域的科研与工程技术人员的参考书。

作者简介

目录

Ⅰ Artificial Intelligence1

1Introduction3

1.1What Is AI?4

Acting humanly: The Turing Test approach5

Thinking humanly: The cognitive modelling approach6

Thinking rationally: The laws of thought approach6

Acting rationally: The rational agent approach7

1.2The Foundations of Artificial Intelligence8

Philosophy(428 B.C.-present)8

Mathematics(c.800-present)11

Psychology (1879-present)12

Computer engineering(1940-present)14

Linguistics(1957-present)15

1.3The History of Artificial Intelligence16

The gestation of artificial Intelligence(1943-1956)16

Early enthusiasm, great expectations(1952-1969)17

A dose of reality(1966-1974)20

Knowledge-based systems: The key to power?(1969-1979)22

AI becomes an Industry(1980-1988)24

The return of neural networks(1986-present)24

Recent events(1987-present)25

1.4The State of the Art26

1.5Summary27

Bibliographical and Historical Notes28

Exercises28

2Intelligent Agents31

2.1Introduction31

2.2How Agents Should Act31

The Ideal mapping from percept sequences to actions34

Autonomy35

2.3Structure of Intelligent Agents35

Agent programs37

Why not just look up the answers?38

An example39

Simple reflex agents40

Agents that keep track of the world41

Goal-based agents42

Utility-based agents44

2.4Environments45

Properties of environments46

Environment programs47

2.5Summary49

Bibliographical and Historical Notes50

Exercises50

ⅡProblem-solving53

3Solving Problems by Searching55

3.1Problem-Solving Agents55

3.2Formulating Problems57

Knowledge and problem types58

Well-defined problems and solutions60

Measuring problem-solving performance61

Choosing states and actions61

3.3Example Problems63

Toy Problems63

Real-world problems68

3.4Searching for Solutions70

Generating action sequences70

Data structures for search trees72

3.5Search Strategies73

Breadth-first search74

Uniform cost search75

Depth-first search77

Depth-limited search78

Iterative deepening search78

Bidirectional search80

Comparing search strategies81

3.6Avoiding Repeated States82

3.7Constraint Satisfaction Search83

3.8Summary85

Bibliographical and Historical Notes86

Exercises87

4Informed Search Methods92

4.1Best-First Search92

Minimize estimated cost to reach a goal:Greedy Search93

Minimizing the total path cost: A* search96

4.2Heuristic Functions101

The effect of heuristic accuracy on performance102

Inventing heuristic functions103

Heuristics for constraint satisfaction problems104

4.3Memory bounded Search106

Iterative deepening A* search (IDA*)106

SMA* search107

4.4Iterative Improvement Algorithms111

Hill-climbing search111

Simulated annealing113

Applications in constraint Satisfaction problems114

4.5Summary115

Bibliographical and Historical Notes115

Exercises118

5Game Playing122

5.1Introduction: games as Search Problems122

5.2Perfect Decisions in Two-Person Games123

5.3Imperfect Decisions126

Evaluation functions127

Cutting off search129

5.4Alpha-Beta Pruning129

Effectiveness of alpha-beta pruning131

5.5Games That Include an Element of Chance133

Position evaluation in games with chance nodes135

Complexity of expectiminimax135

5.6State-of-the-Art Game Programs136

Chess137

Checkers or Draughts138

Othello138

Backgammon139

Go 139

5.7Discussion139

5.8Summary141

Bibliographical and Historical Notes141

Exercises145

ⅢKnowledge and reasoning149

6Agents that Reason Logically151

6.1A Knowledge-Based Agent151

6.2The Wumpus World Environment153

Specifying the environment154

Acting and reasoning in the wumpus world155

6.3Representation, Reasoning, and Logic157

Representation160

Inference163

Logics165

6.4Propositional Logic: A Very Simple Logic166

Syntax166

Semantics168

Validity and inference169

Models170

Rules of inference for propositional logic171

Complexity of propositional inference173

6.5An Agent for the Wumpus World174

The knowledge base174

Finding the wumpus175

Translating knowledge into action176

Problems with the propositional agent176

6.6Summary178

Bibliographical and Historical Notes178

Exercises180

7First-Order Logic185

7.1Syntax and Semantics186

Terms188

Atomic sentences189

Complex sentences189

Quantifiers189

Equality193

7.2Extensions and Notational Variations194

Higher-order logic195

Functional and predicate expressions using the λ operator195

The uniqueness quantifier Э!196

The uniqueness operator ι196

Notational variations196

7.3Using First-Order Logic197

The kinship domain197

Axioms, definitions, and theorems198

The domain of sets199

Special notations for sets, lists and arithmetic200

Asking questions and getting answers200

7.4Logical Agents for the Wumpus World201

7.5A Simple Reflex Agent202

Limitations of simple reflex agents203

7.6Representing Change in the World203

Situation calculus204

Keeping track of location206

7.7Deducing Hidden Properties of the World208

7.8Preferences Among Actions210

7.9Toward a Goal-Based Agent211

7.10Summary211

Bibliographical and Historical Notes212

Exercises213

8Building a knowledge Base217

8.1Properties of Good and Bad Knowledge Bases218

8.2Knowledge Engineering221

8.3The Electronic Circuits Domain223

Decide what to talk about223

Decide on a vocabulary224

Encode general rules225

Encode the specific instance225

Pose queries to the inference procedure226

8.4General Ontology226

Representing Categories229

Measures231

Composite objects233

Representing change with events234

Times, intervals, and actions238

Objects revisited240

Substances and objects241

Mental events and mental objects243

Knowledge and action247

8.5The Grocery Shopping World247

Complete description of the shopping simulation248

Organizing knowledge249

Menu-planning249

Navigating252

Gathering253

Communicating254

Paying256

8.6Summary256

Bibliographical and Historical Notes256

Exercises261

9Inference in First-Order Logic265

9.1Inference Rules Involving Quantifiers265

9.2An Example Proof266

9.3Generalized Modus Ponens269

Canonical form270

Unification270

Sample proof revisited271

9.4Forward and Backward Chaining272

Forward-chaining algorithm273

Backward-chaining algorithm275

9.5Completeness276

9.6Resolution: A Complete Inference Procedure277

The resolution inference rule278

Canonical forms for resolution278

Resolution Proofs279

Conversion to Normal Form281

Example proof282

Dealing with equality284

Resolution strategies284

9.7Completeness of resolution286

9.8Summary290

Bibliographical and Historical Notes291

Exercises294

10Logical Reasoning Systens297

10.1Introduction297

10.2Indexing, Retrieval, and Unification299

Implementing sentences and terms299

Store and fetch299

Table-based indexing300

Tree-based indexing301

The unification algorithm302

10.3Logic Programming Systems304

The Prolog language304

Implementation305

Compilation of logic programs306

Other logic programming languages308

Advanced control facilities308

10.4Theorem Provers310

Design of a theorem prover310

Extending Prolog311

Theorem provers as assistants312

Practical uses of theorem provers313

10.5Forward-Chaining Production Systems313

Match phase314

Conflict resolution phase315

Practical uses of production systems316

10.6Frame Systems and Semantic Networks316

Syntax and semantics of semantic networks317

Inheritance with exceptions319

Multiple inheritance320

Inheritance and change320

Implementation of semantic networks321

Expressiveness of semantic networks323

10.7Description Logics323

Practical uses of description logics325

10.8Managing Retractions, Assumptions, and Explanations325

10.9Summary327

Bibliographical and Historical Notes328

Exercises332

Ⅳ Acting logically335

11Planning337

11.1A Simple Planning Agent337

11.2From Problem Solving to Planning3380

11.3Planning in Situation Calculus341

11.4Basic Representations for Planning343

Representations for states and goals343

Representations for actions344

Situation space and plan space345

Representations for plans346

Solutions349

11.5A Partial-Order Planning Example349

11.6A Partial-Order Planning Algorithm355

11.7Planning with Partially Instantiated Operators357

11.8Knowledge Engineering for Planning359

The blocks world359

Shakey's world360

11.9Summary362

Bibliographical and Historical Notes363

Exercises364

12Practical Planning367

12.1Practical Planners367

Spacecraft assembly, integration, and verification367

Job shop scheduling369

Scheduling for space missions369

Buildings, aircraft carriers, and beer factories371

12.2Hierarchical Decomposition371

Extending the language372

Modifying the planner374

12.3Analysis of Hierarchical Decomposition375

Decomposition and sharing379

Decomposition versus approximation380

12.4More Expressive Operator Descriptions381

Conditional effects381

Negated and disjunctive goals382

Universal quantification383

A planner for expressive operator descriptions384

12.5Resource Constraints386

Using measures in planning386

Temporal constraints388

12.6Summary388

Bibliographical and Historical Notes389

Exercises390

13Planning and Acting392

13.1Conditional Planning393

The nature of conditional plans393

An algorithm for generating conditional plans395

Extending the plan language398

13.2A Simple Replanning Agent401

Simple replanning with execution monitoring402

13.3Fully Integrated Planning and Execution403

13.4Discussion and Extensions407

Comparing conditional planning and replanning407

Coercion and abstraction409

13.5Summary410

Bibliographical and Historical Notes 411

Exercises412

ⅤUncertain knowledge and reasoning413

14Uncertainty415

14.1Acting under Uncertainty415

Handing uncertain knowledge416

Uncertainty and rational decisions418

Design for a decision-theoretic agent419

14.2Basic Probability Notation420

Prior probability420

Conditional probability421

14.3The Axioms of Probability422

Why the axioms of probability are reasonable423

The joint probability distribution425

14.4Bayes' Rule and Its Use426

Applying Bayes' rule: The simple case426

Normalization427

Using Bayes' rule: Combining evidence428

14.5Where Do Probabilities Come From?430

14.6Summary431

Bibliographical and Historical Notes431

Exercises433

15Probabilistic Reasoning Systems436

15.1Representing Knowledge in an Uncertain Domain436

15.2The Semantics of Belief Networks438

Representing the joint probability distribution439

Conditional independence relations in belief networks444

15.3Inference in Belief Networks445

The nature of probabilistic inferences446

An algorithm for answering queries447

15.4Inference in Multiply Connected Belief Networks453

Clustering methods453

Cutset conditioning methods454

Stochastic simulation methods455

15.5Knowledge Engineering for Uncertain Reasoning 456

Case study: The Pathfinder system457

15.6Other Approaches to Uncertain Reasoning 458

Defaulet reasoning459

Rule-based methods for uncertain reasoning460

Representing ignorance: Dempster-Shafer theory462

Representing vagueness: Fuzzy sets and fuzzy logic463

15.7Summary464

Bibliographical and Historical Notes464

Exercises467

16Making Simple Decisions471

16.1Combining Beliefs and Desires Under Uncertainty471

16.2The Basis of Utility Theory473

Constraints on rational preferences473

…and then there was Utility474

16.3Utility Functions475

The utility of money476

UtilityScales and utility assessment478

16.4Multiattribute utility functions480

Dominance481

Preference structure and multiattribute utility483

16.5Decision Networks484

Representing a decision problem using decision net works484

Evaluating decision networks486

16.6The Value of Information487

A simple example487

A general formula488

Propertiesof the value of information489

Implementing an information-gathering agent490

16.7Decision-Theoretic Expert Systems491

16.8Summary493

Bibliographical and Historical Notes493

Exercises495

17Making Complex Decision Problems498

17.1Sequential Decision Problems498

17.2Value Iteration502

17.3Policy Iteration505

17.4Decision-Theoretic Agent Design508

The decision cycle of a rational agent508

Sensing in uncertain worlds510

17.5Dynamic Belief Networks514

17.6Dynamic Decision Networks516

Discussion518

17.7Summary519

Bibliographical and Historical Notes520

Exercises521

ⅥLearning523

18Learning from Observations525

18.1A General Model of Learning Agents525

Components of the performance element527

Representation of the components528

Available feedback528

Prior knowledge528

Bringing it all together529

18.2Inductive Learning529

18.3Learning Decision Trees531

Decision trees as performance elements531

Expressiveness of decision trees532

Inducing decision trees from examples534

Assessing the performance of the learning algorithm538

Practical uses of decision tree learning538

18.4Using Information Theory540

Noise and overfitting542

Broadening the applicability of decision trees543

18.5Learning General Logical Descriptions544

Hypotheses544

Examples545

Current-best-hypothesis search546

Least-commitment search549

Discussion 552

18.6Why Learning Works: Computational Learning Theory552

How many examples are needed?553

Learning decision lists555

Discussion 557

18.7Summary558

Bibliographical and Historical Notes559

Exercises560

19Learning in Neural and Belief Networks563

19.1How the Brain Works564

Comparing brains with digital computers565

19.2Neural Networks567

Notation567

Simple computing elements567

Network structures570

Optimal network structure572

19.3Perceptrons573

What perceptrons can represent573

Learning linearly separable functions575

19.4Multilayer Feed-Forward Networks578

Back-propagation learning578

Back-propagation as gradient descent search580

Discussion583

19.5Applications of Neural Networks584

Pronunciation585

Handwritten character recognition586

Driving586

19.6Bayesian Methods for Learning Belief Networks588

Bayesian learning588

Belief network learning problems589

Learning networks with fixed structure589

A comparison of belief networks and neural networks592

19.7Summary593

Bibliographical and Historical Notes594

Exercises596

20Reinforcement Learning598

20.1Introduction598

20.2Passive Learning in a Known Environment600

Naive updating 601

Adaptive dynamic programming603

Temporal difference learning604

20.3Passive Learning in an Unknown Environment605

20.4Active Learning in anUnknown Environment607

20.5Exploration609

20.6Learning an Action-Value Function612

20.7Generalization in Reinforcement Learning615

Applications to game-playing617

Application to robot control617

20.8Genetic Algorithms and Evolutionary Programming619

20.9Summary621

Bibliographical and Historical Notes622

Exercises623

21Knowledge in Learning625

21.1Knowledge in Learning625

Some simple examples626

Some general schemes627

21.2Explanation-Based Learning629

Extracting general rules from examples630

Improving efficiency631

21.3Learning Using Relevance Information633

Determining the hypothesis space633

Learning and using relevance information634

21.4Inductive Logic Programming636

An example637

Inverse resolution639

Top-down learning methods641

21.5Summary644

Bibliographical and Historical Notes645

Exercises647

ⅦCommunicating, perceiving, and acting649

22Agents that Communicate651

22.1Communication as Action652

Fundamentals of language654

The component steps of communication655

Two modelsof communication659

22.2Types of Communicating Agents659

Communicating using Tell and Ask660

Communicating using formal language661

An agent that communicates662

22.3A Formal Grammar for a Subset of English662

The Lexicon of ε0664

The Grammar ofε0664

22.4Syntactic Analysis(Parsing)664

22.5Definite Clause Grammar(DCG)667

22.6Augmenting a Grammar668

Verb Subcategorization669

Generative Capacity of Augmented Grammars671

22.7Semantic Interpretation672

Semantics as DCG Augmentations673

The semantics of “john loves Mary”673

The semantics ofε1

Converting quasi-logical form to logical form677

Pragmatic Interpretation678

22.8ambiguity and Disambiguation680

Disambiguation682

22.9A Communicating Agent683

22.10Summary684

Bibliographical and Historical Notes685

Exercises688

23Practical Natural Language Processing691

23.1Practical Applications691

Machine translation691

Database access693

Information retrieval694

Text categorization695

Extracting data from text696

23.2Efficient Parsing701

Extracting parses from the chart: Packing701

23.3Scaling Up the Lexicon703

23.4Scaling Up the Grammar705

Nominal compounds and apposition706

Adjective phrases707

Determiners708

Noun phrases revisited709

Clausal complements710

Relative clauses710

Questions711

Handling agrammatical strings712

23.5Ambiguity712

Syntactic evidence713

Lexical evidence713

Semantic evidence713

Metonymy714

Metaphor715

23.6Discourse Understanding715

The structure of coherent discourse717

23.7Summary719

Bibliographical and Historical Notes720

Exercises721

24Perception724

24.1Introduction724

24.2Image Formation725

Pinhole camera725

Lens systems727

Photometry of image formation729

Spectrophotometry of image formation730

24.3Image-Processing Operations for Early Vision730

Convolution with linear filters732

Edge detection733

24.4Extracting3-D Information Using Vision734

Motion735

Binocular stereopsis737

Texture gradients742

Shading743

Contour745

24.5Using Vision for Manipulation and Navigation749

24.6Object representation and Recognition751

The alignment method752

Using projective invariants754

24.7Speech Recognition757

Signal processing758

Defining the overall speech recognition model760

The language model: P(words)760

The acoustic model: P(signallwords)762

Putting the models together764

The search algorithm765

Training the model766

24.8Summary767

Bibliographical and Historical Notes767

Exercises771

25Robotics773

25.1Introduction773

25.2Tasks: What Are Robots Good For?774

Manufacturing and materials handling774

Gofer robots775

Hazardous environments775

Telepresence and virtual reality776

Augmentation of human abilities776

25.3Parts: What are Robots Made Of?777

Effectors: Tools for action777

Sensors: Tools for Perception782

25.4Architectures786

Classical architecture787

Situated automata788

25.5Configuration Spaces: A Framework for Analysis790

Generalized configuration space792

Recognizable Sets795

25.6Navigation and Motion Planning796

Cell decomposition796

Skeletonization methods798

Fine-motion planning802

Landmark-based navigation805

Online algorithms806

25.7Summary809

Bibliographical and Historical Notes809

Exercises811

ⅧConclusions815

26Philosophical Foundations817

26.1The Big Questions817

26.2Foundations of Reasoning and Perception819

26.3On the Possibility of Achieving Intelligent Behavior822

The mathematical objection824

The argument from informality826

26.4Intentionality and Consciousness830

The Chinese Room831

The Brain Prosthesis Experiment835

Discussion836

26.5Summary837

Bibliographical and Historical Notes838

Exercises840

27AI: Present and Future842

27.1Have We Succeeded Yet?842

27.2What Exactly Are We Trying to Do?845

27.3What If we Do Succeed?848

AComplexity analysis and O() notation851

A.1Asymptotic Analysis851

A.2Inherently Hard Problems852

Bibliographical and Historical Notes853

BNotes on Languages and Algorithms854

B.1Defining Languages with Backus-Naur Form(BNF)854

B.2Describing Algorithms with Pseudo-Code855

Nondeterminism855

Static variables856

Functions as values856

B.3The Code Repository857

B.4Comments857

Bibliography859

Index905

媒体评论

 
 
免责声明:本文为网络用户发布,其观点仅代表作者个人观点,与本站无关,本站仅提供信息存储服务。文中陈述内容未经本站证实,其真实性、完整性、及时性本站不作任何保证或承诺,请读者仅作参考,并请自行核实相关内容。
2023年上半年GDP全球前十五强
 百态   2023-10-24
美众议院议长启动对拜登的弹劾调查
 百态   2023-09-13
上海、济南、武汉等多地出现不明坠落物
 探索   2023-09-06
印度或要将国名改为“巴拉特”
 百态   2023-09-06
男子为女友送行,买票不登机被捕
 百态   2023-08-20
手机地震预警功能怎么开?
 干货   2023-08-06
女子4年卖2套房花700多万做美容:不但没变美脸,面部还出现变形
 百态   2023-08-04
住户一楼被水淹 还冲来8头猪
 百态   2023-07-31
女子体内爬出大量瓜子状活虫
 百态   2023-07-25
地球连续35年收到神秘规律性信号,网友:不要回答!
 探索   2023-07-21
全球镓价格本周大涨27%
 探索   2023-07-09
钱都流向了那些不缺钱的人,苦都留给了能吃苦的人
 探索   2023-07-02
倩女手游刀客魅者强控制(强混乱强眩晕强睡眠)和对应控制抗性的关系
 百态   2020-08-20
美国5月9日最新疫情:美国确诊人数突破131万
 百态   2020-05-09
荷兰政府宣布将集体辞职
 干货   2020-04-30
倩女幽魂手游师徒任务情义春秋猜成语答案逍遥观:鹏程万里
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案神机营:射石饮羽
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案昆仑山:拔刀相助
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案天工阁:鬼斧神工
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案丝路古道:单枪匹马
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案镇郊荒野:与虎谋皮
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案镇郊荒野:李代桃僵
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案镇郊荒野:指鹿为马
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案金陵:小鸟依人
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案金陵:千金买邻
 干货   2019-11-12
 
推荐阅读
 
 
>>返回首頁<<
 
 
靜靜地坐在廢墟上,四周的荒凉一望無際,忽然覺得,淒涼也很美
© 2005- 王朝網路 版權所有