泰勒斯的遗产(影印版)(Springer大学数学图书)(The Heritage of Thales)

泰勒斯的遗产(影印版)(Springer大学数学图书)(The Heritage of Thales)  点此进入淘宝搜索页搜索
  特别声明:本站仅为商品信息简介,并不出售商品,您可点击文中链接进入淘宝网搜索页搜索该商品,有任何问题请与具体淘宝商家联系。
  參考價格: 点此进入淘宝搜索页搜索
  分類: 图书,英语与其他外语,职业/行业英语,科技英语,
  品牌: 安格林(W.S.Anglin)

基本信息·出版社:清华大学出版社

·页码:327 页

·出版日期:2009年11月

·ISBN:9787302214830

·条形码:9787302214830

·版本:第1版

·装帧:平装

·开本:16

·正文语种:英语

·丛书名:Springer大学数学图书

·外文书名:The Heritage of Thales

产品信息有问题吗?请帮我们更新产品信息。

内容简介《泰勒斯的遗产》以专题方式讲述数学的历史和数学的哲学(非史论型著作),每个专题相对独立。《泰勒斯的遗产》以数学历史为线索,以数学为内容主体,以数学哲学为引申,易读、易懂,是本科生学习数学过程中非常好的课外读物。

编辑推荐《泰勒斯的遗产》:Springer大学数学图书:影印版

目录

Preface

0 Introduction

PART Ⅰ: History and Philosophy of Mathematics

1 Egyptian Mathematics

2 Scales of Notation

3 Prime Numbers

4 Sumerian-Babylonian Mathematics

5 More about Mesopotamian Mathematics

6 The Dawn of Greek Mathematics

7 Pythagoras and His School

8 Perfect Numbers

9 Regular Polyhedra

10 The Crisis of Incommensurables

11 From Heraclitus to Democritus

12 Mathematics in Athens

13 Plato and Aristotle on Mathematics

14 Constructions with Ruler and Compass

15 The Impossibility of Solving the Classical Problems

16 Euclid

17 Non-Euclidean Geometry and Hilbert's Axioms

18 Alexandria from 300 BC to 200 BC

19 Archimedes

20 Alexandria from 200 BC to 500 AD

21 Mathematics in China and India

22 Mathematics in Islamic Countries

23 New Beginnings in Europe

24 Mathematics in the Renaissance

25 The Cubic and Quartic Equations

26 Renaissance Mathematics Continued

27 The Seventeenth Century in France

28 The Seventeenth Century Continued

29 Leibniz

30 The Eighteenth Century

31 The Law of Quadratic Reciprocity

PART Ⅱ: Foundations of Mathematics

1 The Number System

2 Natural Numbers (Peano's Approach)

3 The Integers

4 The Rationals

5 The Real Numbers

6 Complex Numbers

7 The Fundamental Theorem of Algebra

8 Quaternions

9 Quaternions Applied to Number Theory

10 Quaternions Applied to Physics

11 Quaternions in Quantum Mechanics

12 Cardinal Numbers

13 Cardinal Arithmetic

14 Continued Fractions

15 The Fundamental Theorem of Arithmetic

16 Linear Diophantine Equations

17 Quadratic Surds

18 Pythagorean Triangles and Fermat's Last Theorem

19 What Is a Calculation?

20 Recursive and Recursively Enumerable Sets

21 Hilbert's Tenth Problem

22 Lambda Calculus

23 Logic from Aristotle to Russell

24 Intuitionistic Propositional Calculus

25 How to Interpret Intuitionistic Logic

26 Intuitionistic Predicate Calculus

27 Intuitionistic Type Theory

28 Godel's Theorems

29 Proof of GSdel's Incompleteness Theorem

30 More about Godel's Theorems

31 Concrete Categories

32 Graphs and Categories

33 Functors

34 Natural Transformations

35 A Natural Transformation between Vector Spaces

References

Index

……[看更多目录]

序言在学校教书多年,当学生(特别是本科生)问有什么好的参考书时,我们所能推荐的似乎除了教材还是教材,而且不同教材之间的差别并不明显、特色也不鲜明。所以多年前我们就开始酝酿,希望为本科学生引进一些好的参考书,为此清华大学数学科学系的许多教授与清华大学出版社共同付出了很多心血。

这里首批推出的十余本图书,是从Springer出版社的多个系列丛书中精心挑选出来的。在丛书的筹划过程中,我们挑选图书最重要的标准并不是完美,而是有特色并包容各个学派(有些书甚至有争议,比如从数学上看也许不够严格),其出发点是希望我们的学生能够吸纳百家之长;同时,在价格方面,我们也做了很多工作,以使得本系列丛书的价格能让更多学校和学生接受,使得更多学生能够从中受益。

本系列图书按其定位,大体有如下四种类型(一本书可以属于多类,但这里限于篇幅不能一一介绍)。

文摘插图:

泰勒斯的遗产(影印版)(Springer大学数学图书)(The Heritage of Thales)

Pythagoras and His School

Pythagoras (570-500 BC) was born in Samoa, a Greek island off the coast of what is now Turkey. According to ancient sources (Iamblichus, Porphyry and Diogenes Liberties), he traveled and studied in the Persian empire, which extended then from northern Greece to the Indus Valley and included ancient Mesopotamia. We know (Plimpton 322) that the Babyloni- ans understood what is now called the 'theorem of Pythagoras', although the latter may have given the first proof. Pythagoras may have learned the theory of 'Pythagorean triangles' from the Babylonians. According to the above mentioned sources, Pythagoras also studied under the Zoroastrian priests, the so-called 'Magi'. However, judging from his belief in reincarnation and his vegetarianism, it is more likely that he was influenced by Hindu tradition. Even his mathematics has an Indian flavour. About 525 BC, Pythagoras emigrated to Croton (modern Crotone) in southern Italy, where he founded a society, half-way between a political party and a religious cult, which came to be known as the 'Pythagorean Brotherhood.' Some members of this society were admitted to an inner circle consisting of the so-called 'mathematicians'. The word 'mathematics' was in fact introduced by Pythagoras. The first part of this word is an old Indo-European root, related to the English word 'mind'. The modern meaning of 'mathematics' is due to Aristotle.

 
 
免责声明:本文为网络用户发布,其观点仅代表作者个人观点,与本站无关,本站仅提供信息存储服务。文中陈述内容未经本站证实,其真实性、完整性、及时性本站不作任何保证或承诺,请读者仅作参考,并请自行核实相关内容。
 
© 2005- 王朝網路 版權所有 導航