生物数学引论(影印版)(Springer大学数学图书)(Essential Mathematical Biology)
分類: 图书,英语与其他外语,职业/行业英语,科技英语,
品牌: 尼古拉斯(Nicholas F.Britton)
基本信息·出版社:清华大学出版社
·页码:335 页
·出版日期:2009年11月
·ISBN:9787302214892
·条形码:9787302214892
·版本:第1版
·装帧:平装
·开本:16
·正文语种:英语
·丛书名:Springer大学数学图书
·外文书名:Essential Mathematical Biology
产品信息有问题吗?请帮我们更新产品信息。
内容简介《生物数学引论》由浅入深讲述生物数学基础理论,从最经典的问题入手,最后走向学科前沿和近年的热点问题;内容先进,讲述方法科学,简洁明了,易读性好。生物数学在应用数学中占有日益重要的地位,数学系培养的学生至少一部分人应当对这个领域有所了解。随着生命科学的迅速发展,生物数学也发展很快。
《生物数学引论》自身具有完整体系,在“微积分”、“代数”等基础课知识之外,读者不需要其他预备知识。
《生物数学引论》适合用作数学及生命科学高年级本科生相关课程教材或参考书。
编辑推荐《生物数学引论》:Springer大学数学图书:影印版
目录
Contents
List of Figures
1. Single Species Population Dynamics
1.1 Introduction
1.2 Linear and Nonlinear First Order Discrete Time Models.
1.2.1 The Biology of Insect Population Dynamics
1.2.2 A Model for Insect Population Dynamics with Competition
1.3 Differential-Equation Models
1.4 EvolutionaryAspects
1.5 Harvesting and Fisheries
1.6 Metapopulations
1.7 Delay Effects
1.8Fibonacci's-Rabbits
1.9 Leslie Matrices: Age-structured Populations in Discrete Time
1 10 Euler-Lotka Equations
1.10.1 Discrete Time
1.10.2 Continuous Time
1.11 The McKendrick Approach to Age Structure
1 12 Conclusions
2. Population Dynamics of Interacting Species
2.1 Introduction
2 2 Host-parasitoid Interactions
2.3 The Lotka-Volterra Prey-predator Equations
2.4 Modelling the Predator Functional Response
2.5 Competition.
2.6 Ecosystems Modelling
2.7 Interacting Metapopulations
2.7.1 Competition
2.7.2 Predation
2.7.3 Predator-mediated Coexistence of Competitors
2.7.4 Effects of Habitat Destruction
2.8 Conclusions
3. Infectious Diseases
3.1 Introduction
3.2 The Simple Epidemic and SIS Diseases
3.3 SIR Epidemics
3.4 SIR Endemics
3.4.1 No Disease-related Death
3.4.2 Including Disease-related Death
3.5 Eradication and Control
3.6 Age-structured Populations
3.6.1 The Equations
3.6.2 Steady State
3.7 Vector-borne Diseases
3.8 Basic Model for Macroparasitic Diseases
3.9 Evolutionary Aspects
3.10 Conclusions
4. Population Genetics and Evolution
4.1 Introduction
4.2 Mendelian Genetics in Populations with Non-overlapping Generations
4.3 Selection Pressure
4.4 Selection in Some Special Cases
4.4.1 Selection for a Dominant Allele
4.4.2 Selection for a Recessive Allele
4.4.3 Selection against Dominant and Recessive Alleles
4.4.4 The Additive Case
4.5 Analytical Approach for Weak Selection
4.6 The Balance Between Selection and Mutation
4.7 Wright's Adaptive Topography
4.8 Evolution of the Genetic System
4.9 Game Theory
4.10 Replicator Dynamics
4.11 Conclusions
5. Biological Motion
5.1 Introduction
5.2 Macroscopic Theory of Motion; A Continuum Approach
5.2.1 General Derivation
5.2.2 Some Particular Cases
5.3 Directed Motion, or Taxis
5.4 Steady State Equations and Transit Times
5.4.1 Steady State Equations in One Spatial Variable
5.4.2 Transit Times
5.4.3 Macrophages vs Bacteria
5.5 Biological Invasions: A Model for Muskrat Dispersal
5.6 Travelling Wave Solutions of General Reaction-diffusion Equations
5.6.1 Node-saddle Orbits (the Monostable Equation)
5.6.2 Saddle-saddle Orbits (the Bistable Equation)
5.7 Travelling Wave Solutions of Systems of Reaction-diffusion
Equations: Spatial Spread of Epidemics
5.8 Conclusions
6. Molecular and Cellular Biology
6.1 Introduction
6.2 Biochemical Kinetics
6.3 Metabolic Pathways
6.3.1 Activation and Inhibition
6.3.2 Cooperative Phenomena
6.4 Neural Modelling
6.5 Immunology and AIDS
6.6 Conclusions
7. Pattern Formation
7.1 Introduction
7.2 Turing Instability
7.3 Turing Bifurcations
7.4 Activator-inhibitor Systems
7.4.1 Conditions for Turing Instability
7.4.2 Short-range Activation, Long-range Inhibition
7.4.3 Do Activator-inhibitor Systems Explain Biological Pattern Formation?
7.5 Bifurcations with Domain Size
7.6 Incorporating Biological Movement
7.7 Mechanochemical Models
7.8 Conclusions
8. Tumour Modelling
8.1 Introduction
8.2 Phenomenological Models
8.3 Nutrients: the Diffusion-limited Stage
8.4 Moving Boundary Problems
8.5 Growth Promoters and Inhibitors
8.6 Vascularisation
8.7 Metastasis
8.8 Immune System Response
8.9 Conclusions
Further Reading
A. Some Techniques for Difference Equations
A.I First-order Equations
A.I.1 Graphical Analysis
A.1.2 Linearisation
A.2 Bifurcations and Chaos for First-order Equations
A.2.1 Saddle-node Bifurcations
A.2.2 Transcritical Bifurcations
A.2.3 Pitchfork Bifurcations
A.2.4 Period-doubling or Flip Bifurcations
A.3 Systems of Linear Equations: Jury Conditions
A.4 Systems of Nonlinear Difference Equations
A.4.1 Linearisation of Systems
A.4.2 Bifurcation for Systems
B. Some Techniques for Ordinary Differential Equations
B.1 First-order Ordinary Differential Equations
B.I.1 Geometric Analysis
B.1.2 Integration
B.1.3 Linearisation
B.2 Second-order Ordinary Differential Equations
B.2.1 Geometric Analysis (Phase Plane)
B.2.2 Linearisation
B.2.3 Poincard-Bendixson Theory
B.3 Some Results and Techniques for ruth Order Systems
B.3.1 Linearisation
B.3.2 Lyapunov Functions
B.3.3 Some Miscellaneous Facts
B.4 Bifurcation Theory for Ordinary Differential Equations
B.4.1 Bifurcations with Eigenvalue Zero
B.4.2 Hopf Bifurcations
C. Some Techniques for Partial Differential Equations
C.1 First-order Partial Differential Equations and Characteristics
C.2 Some Results and Techniques for the Diffusion Equation
C.2.1 The Fundamental Solution
C.2.2 Connection with Probabilities
C.2.3 Other Coordinate Systems
C.3 Some Spectral Theory for Laplace's Equation
C.4 Separation of Variables in Partial Differential Equations
C.5 Systems of Diffusion Equations with Linear Kinetics
C.6 Separating the Spatial Variables from Each Other
D. Non-negative Matrices
D.1 Perron-Frobenius Theory
E. Hints for Exercises
Index
……[看更多目录]
序言在学校教书多年,当学生(特别是本科生)问有什么好的参考书时,我们所能推荐的似乎除了教材还是教材,而且不同教材之间的差别并不明显、特色也不鲜明。所以多年前我们就开始酝酿,希望为本科学生引进一些好的参考书,为此清华大学数学科学系的许多教授与清华大学出版社共同付出了很多心血。
这里首批推出的十余本图书,是从Springer出版社的多个系列丛书中精心挑选出来的。在丛书的筹划过程中,我们挑选图书最重要的标准并不是完美,而是有特色并包容各个学派(有些书甚至有争议,比如从数学上看也许不够严格),其出发点是希望我们的学生能够吸纳百家之长;同时,在价格方面,我们也做了很多工作,以使得本系列丛书的价格能让更多学校和学生接受,使得更多学生能够从中受益。
本系列图书按其定位,大体有如下四种类型(一本书可以属于多类,但这里限于篇幅不能一一介绍)。
文摘插图: