燃料电池是一种将氢和氧的化学能通过电极反应直接转换成电能的装置。这种装置的最大特点是由于反应过程中不涉及到燃烧,因此其能量转换效率不受"卡诺循环"的限制,其能量转换率高达60%-80%,实际使用效率则是普通内燃机的2-3倍。另外,它还具有燃料多样化、排气干净、噪音低、对环境污染小、可靠性及维修性好等优点。
氢氧燃料电池装置从本质上说是水电解的一个"逆"装置。电解水过程中,通过外加电源将水电解,产生氢和氧;而在燃料电池中,则是氢和氧通过电化学反应生成水,并释放出电能。燃料电池的工作原理与普通电化学电池相类似,然而从实际应用来考虑,两者存在着较大的差别。普通电池是将化学能储存在电池内部的化学物质中,当电池工作时,这些有限的物质发生反应,将储存的化学能转变成电能,直至这些化学物质全部发生反应。对于原电池而言,电池所放出的能量取决于电池中储存的化学物质量,对于可充电电池而言,则可以通过外部电源进行充电,使电池工作时发生的化学反应逆向进行,得到新的活性化学物质,电池可重新工作。因此实际上普通电池只是一个有限的电能输出和储存装置。而燃料电池则不同,参与反应的化学物质,氢和氧,分别由燃料电池外部的单独储存系统提供,因而只要能保证氢氧反应物的供给,燃料电池就可以连续不断地产生电能,从这个意义上说,燃料电池是一个氢氧发电装置。
按电解质划分,燃料电池大致上可分为五类:碱性燃料电池(AFC)、磷酸型燃料电池(PAFC)、固体氧化物燃料电池(SOFC)、熔融碳酸盐燃料电池(MCFC)和质子交换膜燃料电池(PEMFC)。
在内部发生与水(H2O)电解相反的反应、将此时产生的电流输出到外部使用的电池。与普通电池不同,无需更换电池及充电。不过,需要供给氢气及甲醇等燃料。通过这些燃料中含有的氢(H)在燃料电池内部与空气中的氧(O)发生反应,在生成 H2O的同时产生电流。与其说是电池,倒不如说是发电机。
燃料电池以电池单元为基本构成要素,电池单元由空气极、燃料极、支撑催化剂的电解质膜,以及形成氢、氧供给通道和排水通道的隔板构成。每个电池单元可产生0.7V左右的电压。可通过控制电池单元的层积数量来决定整个系统的输出功率。
燃料电池的原理由英国的W. Grove于1839年提出。该原理达到实用水平是从20世纪美国双子座(Gemini)宇宙飞船配备燃料电池开始的。如果用一句话概括燃料电池,又可分为电解质膜型、基于工作温度的磷酸型、熔融碳酸盐型、固体电解质型及固体高分子型4大种类。其中,固体高分子型最受关注。1987年,加拿大巴拉德电力系统公司(Ballard Power Systems Inc.)向业界展示了固体高分子型燃料电池实现高输出功率的可能性,以此为契机,日美欧的研究开发活动从此活跃起来。