help

王朝干货·作者佚名  2011-12-21
窄屏简体版  字體: |||超大  

f(n) is a function defined on the positive integers with positive integer values such that f(ab) = f(a)f(b) when a, b are relatively prime and f(p+q) = f(p)+f(q) for all primes p, q. Show that f(2) = 2, f(3) = 3 and f(1999) = 1999.

f(6) = f(3+3) = f(3) + f(3) and = f(23) = f(2)f(3). Hence f(2) = 2. Hence f(4) = f(2+2) = f(2) + f(2) = 4.

Now f(12) = f(4)f(3) = 4f(3). Also = f(5) + f(7) = f(5) + (f(5) + 2) = 2(f(3) + 2) + 2. Hence f(3) = 3.

We have 2002 = 271113, and f(1999) = f(2002) - 3. We have f(5) = 3 + 2 = 5, f(7) = 5 + 2 = 7. Also f(15) = 53 = 15, and f(15) = f(13) + 2, so f(13) = 13. Similarly f(11) = f(13) - 2 = 11. Hence f(2002) = 2002 and f(1999) = 1999.

小贴士:① 若网友所发内容与教科书相悖,请以教科书为准;② 若网友所发内容与科学常识、官方权威机构相悖,请以后者为准;③ 若网友所发内容不正确或者违背公序良俗,右下举报/纠错。
 
 
 
免责声明:本文为网络用户发布,其观点仅代表作者个人观点,与本站无关,本站仅提供信息存储服务。文中陈述内容未经本站证实,其真实性、完整性、及时性本站不作任何保证或承诺,请读者仅作参考,并请自行核实相关内容。
 
 
© 2005- 王朝網路 版權所有 導航