“毕达哥拉斯定理”就是中国数学界著名的“勾股定理”,其内容是:
“在直角三角形中,两条直角边的平方和等于斜边的平方”。
例如:两条直角边长分别为3和4,那么斜边长就是5,
若一直角形的两股为a,b斜边为c,则有a2+b2=c2。我们都很熟悉这个性质,人们相信是毕达格拉斯〈约公元前560年~公元前480发现的),因此把它叫做毕氏定理。
毕达格拉斯曾提一组勾股数的正数数解:a=2n+1,b=2n2+2n,c=2n2+2n+1,其特点是斜边与其中一股的差为1。不是方程式a2+b2=c2的所有解,全部解的公式是a=2mn,y=m2-n2,z=m2+n2其中m,n(m>n)是互质且一奇一偶的任意正整数。
在国外,尤其在西方,勾股定理通常被称为毕达哥拉斯定理.
若一直角形的两股为a,b斜边为c,则有a2+b2=c2。我们都很熟悉这个性质,人们相信是毕达格拉斯〈约公元前560年~公元前480发现的),因此把它叫做毕氏定理。
毕达格拉斯曾提一组勾股数的正数数解:a=2n+1,b=2n2+2n,c=2n2+2n+1,其特点是斜边与其中一股的差为1。不是方程式a2+b2=c2的所有解,全部解的公式是a=2mn,y=m2-n2,z=m2+n2其中m,n(m>n)是互质且一奇一偶的任意正整数。