随机变量X在区间上的概率 可以由其概率密度函数的定积分表示: P[a< X\le b]=\int_{a}^. 而 F(x)=P[X<x]=\int_{- 是X的累積分佈函數,显然概率密度函数是它的导函数。所以,答案是累积分布函数。
参考资料:zh.wikipedia.org/wiki/概率密度函数
得到数字:1 因为概率密度表示部分在整体中所占的多少,积分后就得到一个整体,所以是数字1啊
随机变量X在区间上的概率 可以由其概率密度函数的定积分表示: P[a< X\le b]=\int_{a}^. 而 F(x)=P[X<x]=\int_{- 是X的累積分佈函數,显然概率密度函数是它的导函数。所以,答案是累积分布函数。
参考资料:zh.wikipedia.org/wiki/概率密度函数
得到数字:1 因为概率密度表示部分在整体中所占的多少,积分后就得到一个整体,所以是数字1啊