过程如下:tan^B=tanCtanA
=tan(π-A-B)tanA
=-tan(A+B)tanA
∴(-sinAcosB-cosAsinB)/(cosAcosB-sinAsinB)*sinA/cosA=sin^B/cos^2B
∴-sin^2Acos^3B-cosAsinAsinBcos^2B=sin^2Bcos^2AcosB-sinAsin^3BcosA
移项,得-sin^2Acos^3B-sin^2Bcos^2AcosB=cosAsinAsinBcos^2B-sinAsin^3BcosA
整理左边,得-(1-cos^2B)(1-sin^2A)cosB-sin^2Acos^3B
=-cos^2AcosB+cos^3Bcos2A
整理右边,得sinAcosAsinB(cos^2B-sin^2B)
=0.5sin2Acos2BsinB
两边+cosB,再整理,得
-2cos2AcosBsin^2B=sin2Acos2BsinB+cosB
移项,整理,得
sinB(sin2Acos2B+cos2Asin2B)=-cosB
即tanB=-1/sin2(A+B)=-1/sin2(π-A-B)=-1/sin2C
∵C∈(0,π)
∴2C∈(0,2π)
∴sin2C∈(-1,1)
∴tanB∈(-1,1)
∴B∈(-π/4,π/4)
又∵B∈(0,π)
∴B∈(0,π/4)。
回答完毕。