数学经典问题蜂窝猜想是怎么回事?

王朝干货·作者佚名  2011-11-27
窄屏简体版  字體: |||超大  

数学经典问题蜂窝猜想

加拿大科学记者德富林在《环球邮报》上撰文称,经过1600年努力,数学家终于证明蜜蜂是世界上工作效率最高的建筑者。

四世纪古希腊数学家佩波斯提出,蜂窝的优美形状,是自然界最有效劳动的代表。他猜想,人们所见到的、截面呈六边形的蜂窝,是蜜蜂采用最少量的蜂蜡建造成的。他的这一猜想称为“蜂窝猜想”,但这一猜想一直没有人能证明。

美密执安大学数学家黑尔宣称,他已破解这一猜想。蜂窝是一座十分精密的建筑工程。蜜蜂建巢时,青壮年工蜂负责分泌片状新鲜蜂蜡,每片只有针头大校而另一些工蜂则负责将这些蜂蜡仔细摆放到一定的位置,以形成竖直六面柱体。每一面蜂蜡隔墙厚度及误差都非常小。6面隔墙宽度完全相同,墙之间的角度正好120度,形成一个完美的几何图形。人们一直疑问,蜜蜂为什么不让其巢室呈三角形、正方形或其他形状呢?隔墙为什么呈平面,而不是呈曲面呢?虽然蜂窝是一个三维体建筑,但每一个蜂巢都是六面柱体,而蜂蜡墙的总面积仅与蜂巢的截面有关。由此引出一个数学问题,即寻找面积最大、周长最小的平面图形。

1943年,匈牙利数学家陶斯巧妙地证明,在所有首尾相连的正多边形中,正多边形的周长是最小的。1943年,匈牙利数学家陶斯巧妙地证明,在所有首尾相连的正多边形中,正多边形的周长是最小的。但如果多边形的边是曲线时,会发生什么情况呢?陶斯认为,正六边形与其他任何形状的图形相比,它的周长最小,但他不能证明这一点。而黑尔在考虑了周边是曲线时,无论是曲线向外突,还是向内凹,都证明了由许多正六边形组成的图形周长最校他已将19页的证明过程放在因特网上,许多专家都已看到了这一证明,认为黑尔的证明是正确的。

小贴士:① 若网友所发内容与教科书相悖,请以教科书为准;② 若网友所发内容与科学常识、官方权威机构相悖,请以后者为准;③ 若网友所发内容不正确或者违背公序良俗,右下举报/纠错。
 
 
 
免责声明:本文为网络用户发布,其观点仅代表作者个人观点,与本站无关,本站仅提供信息存储服务。文中陈述内容未经本站证实,其真实性、完整性、及时性本站不作任何保证或承诺,请读者仅作参考,并请自行核实相关内容。
 
 
© 2005- 王朝網路 版權所有 導航