设a>b>0,a^2+b^2=4ab,则a+b/a-b得值等于多少?
若ab=1.则1/(1+a^2)+1/(1+b^2)得值为多少?
參考答案:设a>b>0,a^2+b^2=4ab,则a+b/a-b得值等于多少?
a^2+b^2=4ab,
(a+b)^2=6ab,
(a-b)^2=2ab,
所以,
(a+b)/(a-b)=6ab/2ab=3
a>b>0,
所以,a+b/a-b=根号3。
若ab=1.则1/(1+a^2)+1/(1+b^2)得值为多少?
1/(1+a^2)+1/(1+b^2)
=ab/(ab+a^2)+ab/(ab+b^2)
=b/(b+a)+a/(a+b)
=(a+b)/(a+b)
=1