如图,设P是等边△ABC内的一点,PA=3,PB=4,PC=5,则∠APB的度数是
參考答案:90 + 60 = 150
按原题作图:
以B为中心,按60度旋转△BAP,使得 A点旋转至C点,P点至 Q。可以很容易证明:CQ = PA、PQ = PB
注意到 PA^2 + PB^2 = PC^2 是直角三角形
∠CQP = 90°所以∠CQB = 150°
注意:∠CQB = ∠APB
笑话军事旅游美容女性百态母婴家电游戏互联网财经美女干货家饰健康探索资源娱乐学院 数码美食景区养生手机购车首饰美妆装修情感篇厨房科普动物植物编程百科知道汽车珠宝 健康评测品位娱乐居家情感星座服饰美体奢侈品美容达人亲子图库折扣生活美食花嫁风景 | 首页 |
如图,设P是等边△ABC内的一点,PA=3,PB=4,PC=5,则∠APB的度数是
參考答案:90 + 60 = 150
按原题作图:
以B为中心,按60度旋转△BAP,使得 A点旋转至C点,P点至 Q。可以很容易证明:CQ = PA、PQ = PB
注意到 PA^2 + PB^2 = PC^2 是直角三角形
∠CQP = 90°所以∠CQB = 150°
注意:∠CQB = ∠APB