极限
微积分学乃至分析数学的基本概念之一,用于描述变量在某一变化过程中的变化趋势。极限的朴素思想和应用可追溯到古代,中国早在2000年前就已能算出方形、圆形、圆柱等几何图形的面积和体积,3 世纪刘徽创立的割圆术,就是用圆内接正多边形面积的极限是圆面积这一思想来近似计算圆周率π的。并指出“割之弥细,所失弥少,割之又割,以至不可割,则与圆合体而无所失矣”。随着微积分学的产生,极限概念被明确提出,但含糊不清,直至19世纪,由A.-L.柯西、K.魏尔斯特拉斯等人的工作 ,以及实数理论的建立,才使极限理论建立在严密的理论基础之上。
在一定的认识基础上,极限是不能超越的。但也是相对而言。随着科学的发展,对现有极限的认识当然是可能改变的。