血红蛋白是一种结合蛋白,分子量64,000,由珠蛋白和血红素构成。血红素由原卟啉与亚铁原子组成,每一个珠蛋白分子有二对肽链,一对是α链,由141个氨基酸残基构成,含较多组氨酸,其中α87位(即F8)组氨酸与血红素铁的结合,在运氧中具重要生理作用。另一对是非α链,有β、γ、δ、ξ(结构与α链相似)及ε5种;后2种与α链、γ-链分别组成胚胎早期(妊娠3月以内)血红蛋白、HbGower-1(ζ2ε2)、HbGower-2(α2ε2)、HbPortland(ζ2γ2)。β链含146个氨基酸残基、β93半胱氨酸易被氧化产生混合二硫化物及其它硫醚类物质,可降低血红蛋白稳定性。δ链亦由146个氨基酸残基组成,仅10个氨基酸与β链不同。由于δ链中第22位丙氨酸置换了β22谷氨酸,第116位精氨酸置换了β116组氨酸,因此δ链的正电荷大于β链,HbA2(α2δ2)等电点升高,电泳时靠近负极。γ链虽由146个氨基酸组成,但与β链有39个氨基酸不同,且含有4个异亮氨酸,为α、β与δ链所缺如,因此可用分析异亮氨酸方法以测定HbF(α2γ2)含量。正常人有二种γ链、Gr-r136为甘氨酸,Ar-r136为丙氨酸,说明控制γ链生物合成的基因位点不止一个(图20-11)。初生时Gr与Ar的比例是3∶1,儿童和成人二者之比为2∶3。每一条肽链和一个血红素连接,构成一个血红蛋白单体。人类血红蛋白是由二对(4条)血红蛋白单体聚合而成的四聚体。不同类型的血红蛋白珠蛋白结构略有不同,但血红素均相同。
血红蛋白的四级结构:由氨基酸顺序排列的肽链结构称为血红蛋白的一级结构。肽链中的氨基酸可分为亲水的极化氨基酸(其侧链为羧基、氨基),与非极化的氨基酸(其侧链是芳香族)。肽链中的各种氨基酸的侧链相互拉紧形成α螺旋,螺旋形节段间由短而非螺旋形节段相连。螺旋形节段从N端-C端分别以A-H表示(图20-12),非螺旋形节段用AB、CD等表示,称为血红蛋白的二级结构。血红素的铁原子有6个配位键,第5个配位键结合在肽链F段第8位氨基酸上(即α链第87位或β链第92位组氨酸的咪唑基上),第6个配位键结合氧,并间接结合在肽链E段的第7位氨基酸上(即α链第58位或β-链第63位组氨酸的咪唑基上),使肽链围绕血红素为中心,构成内外二层螺旋状蛇形盘曲的三维空间结构,称为三级结构(图20-12)。亲水氨基酸分布于外层,使血红蛋白能溶于水而不致沉淀;疏水氨基酸分布于内层,使水分子不能进入血红素腔内部,避免血红素的Fe2+氧化为Fe3+。四个血红蛋白单体(肽链三级结构加血红素),按一定的空间关系结合成四聚体,如HbA(或HbA1,α2β2)、HbA2(α2δ2)及HbF(α2γ2),称异质型四聚体;由二对同样的三级结构血红蛋白单体结合成的四聚体,如HbH(β4)及HbBart(γ4),称为同质型四聚体。以上所述四聚体为血红蛋白四级结构。通过X线衍射研究四聚体的空间关系,发现α1β1及α2β2的接触面较大,相互移动度较小,疏水,有利于血红蛋白分子构型的稳定性。α1β2及α2β1接触面小而不牢固,移动度大,有利于血红蛋白对氧的正常摄取与释放。四聚体解离,首先离解为α1β1及α2β2。综上所述,血红蛋白与分子的外表结构必需完整,带有负电荷;α、β链结合部位要固定,包围血红素腔的氨基酸顺序排列应完整,否则血红蛋白就不能维持分子结构稳定性及正常运输氧生理功能,并易遭破坏。
正常人出生后有三种血红蛋白:①血红蛋白A(HbA),由一对α链和一对β链组成(α2β2),为正常人主要血红蛋白,占血红蛋白总量的95%以上。胚胎二个月时HbA即有少量出现,初生时占10%~40%,出生6个月后即达成人水平;②血红蛋白A2(HbA2),由一对α链和一对δ链组成(α2δ2)。自出生6~12个月起,占血红蛋白的2~3%;③胎儿血红蛋白(HbF)由一对α链和一对γ链组成(α2γ2),初生时占体内血红蛋白的70%~90%,以后渐减。至生后6月,含量降至血红蛋白总量的1%左右。血红蛋白的不同肽链是由不同的遗传基因控制的,α链基因位于第16号染色体,β、δ、γ链基因位于第11号染色体,呈连锁关系(图20-11)。α珠蛋白基因的缺失或缺陷,导致α珠蛋白链合成减少或缺乏,称为α海洋性贫血。β珠蛋白基因缺陷,导致β珠蛋白链合成减少或缺乏,称为β海洋性贫血。珠蛋白基因突变而致肽链的单个或多个氨基酸替代或缺如,导致珠蛋白分子结构改变,称为异常血红蛋白。全世界范围内经结构分析证实的异常血红蛋白日益增多,至90年代初期已达600多种,但仅不到1/3的异常血红蛋白伴有临床症状。世界卫生组织估计,全球约有1.5亿人携带血红蛋白病基因,并已将血红蛋白病列为严重危害人类健康的6种常见病之一。异常血红蛋白病在我国以云南、贵州、广西、新疆等地发病率较高,现已发现异常血红蛋白67种,包括α链(34种)、β链(26种)、γ链(4种)等异常,其中19种为我国首见。海洋性贫血多发于华南及西南地区。根据近10年来我国28个省市、自治区近100万人口的普查资料,异常血红蛋白病的发病率为0.33%,α海洋性贫血的发病率为2.64%,β海洋性贫血的发病率为0.66%。
【分子遗传学】
血红蛋白的分子遗传变化,大致可归纳为以下6类:
(一)单个碱基替代 由于遗传密码中单个碱基替代,导致由该碱基决定的氨基酸发生相应的变化,形成肽链中单个氨基酸置换的异常血红蛋白,例如HbS、HbC等。目前发现的异常血红蛋白中,以本类型最多见,约占90%。
(二)终止密码的突变 因终止密码(UAA、UAG)的变异,使珠蛋白肽链不在正常的位置终止,导致肽链延长或缩短,如Hb McKees Rock的β链第145位氨基酸的碱基由UAU变为UAA(终止密码),使β链提前结束,仅含144个氨基酸。又如Hb ConstantSpring α链第142位终止密码UAA变为CAA,直至第173位才出现终止密码,因此Hb Constant Spring α链比正常α链多32个氨基酸。
(三)移码突变 如正常血红蛋白肽链遗传密码中,嵌入或缺失1~2个碱基,使正常三联密码子碱基成分发生改变,如HbTak为β链第147位终止密码UAA前插入AC,使UAA→ACU苏氨酸,而致β链延长至第157位氨基酸,比正常β链多11个氨基酸。
(四)密码子缺失或插入 生殖细胞减数分裂时,联合中的染色体发生错配或不等交换,形成两种珠蛋白基因。一种失去一部分密码子,合成缺失部分氨基酸的肽链,如HbLyon,β链第17-18位缺失赖、缬氨酸。另一条染色单体上却嵌入了相应密码子,合成插入部分氨基酸的肽链。又如Hb Grady α链第119与120间嵌入了α链第117~119三个氨基酸(苯丙-苏-脯氨酸)。
(五)融合基因 减数分裂时,不同珠蛋白基因之间发生不等交换,合成融合链的异常血红蛋白,如δ链和β链基因错误联合,产生不等交换,形成融合基因δβ(Hb Lepore)和βδ(Hb反Lepore)。
(六)其它 由于α珠蛋白基因缺陷,使α链合成减少或缺如,过剩的β链与γ链形成四聚体,如β4-HbH,γ4Hb Barts;或由于β珠蛋白基因缺陷,βmRNA缺乏或转录、转译缺陷,使β链合成减少或缺如、导致HbA减少,而HbF、HbA2增高。上述珠蛋白肽链本身并无氨基酸顺序的改变。