已知:三角形ABC中,角C-角B=60度,
且2(AB-AC)*(AB-AC)=BC*BC
求证:A角等于90度
參考答案:使用简写符号:a = BC、b = AC、c = AB,大写字母A、B、C 分别表示角度
C - B = 60°根据正弦定理可以知道:
c - b > 0 ..................................(1)
根据题目给出条件有:
2(c - b)^2 = a^2
根据(1)可以得到
c - b = (√2/2)*a .........................(2)
继续应用正弦定理,(2)可以变换为:
sinC - sinB = (√2/2)*sinA ..............(3)
注意到:
sinC - sinB
= 2sin[(C - B)/2]*cos[(C + B)/2]
= 2*sin30°sin(A/2)
= sin(A/2)
sinA = 2*sin(A/2)*cos(A/2)
以上二式代入(3)有:
√2*cos(A/2) = 1
cos(A/2) = √2/2
A/2 = 45°
A = 90°
--------------------------------------------
补充:噢,老师的思路是纯粹几何方法,很巧妙啊!
延长 AC 至 E,使得 AE = AB 则有:
∠AEB = ∠ABE
为了书写方便,记 B = ∠ABC、C = ∠ACB、x = ∠AEB、y = ∠CBE
有关系式:
C = x + y ....................(1)
x = B + y ....................(2)
(1) + (2)
C + x = x + B + 2y
2y = C - B = 60°
y = 30°
做 CF⊥BE 交 BE 于 F,因为∠CBE = 30°,所以
CF = BC/2
EF^2 = CE^2 - CF^2 .......................(3)
CE^2
= (AE - AC)^2
= (AB - AC)^2 ...........AE = AB
= [BC^2]/2 ..............已知条件
代入(3)得到
EF^2
= [BC^2]/2 - [BC^2]/4
= [BC^2]/4
EF = BC/2 = CF
所以∠CEB = 45°,∠ABE = 45°,自然有∠BAE = 90°即 A = 90°