请帮帮我哦~~
1.若sinA+cosA=m,求sin(2A)-cos(4A).
2.已知sinA+sinB=1,求cosA+cosB的取值范围.
请写出过程,谢谢啊 ~~~~~~
參考答案:1:
倍角公式:
sin(2x)=2sinxcosx
cos(2x)=1-2(sinx)^2
解:
(sinA+cosA)^2=m^2,
1+sin2A=m^2
sin2A=m^2-1 --------(1)
sin2A-cos4A=sin2A-[1-2(sin2A)^2]--------(2)
(1)代入(2)得
m^2-1-[1-2*(m^2-1)^2]
=2*m^4+3*m^2
2:
sinA+sinB=1
A=90,B=0,sin90+sin0=1 cos90+cos0=1
A=90,B=180,sin90+sin180=1 cos90+cos180=-1
cosA+cosB的范围是[-1,1]
sinA+sinB = 2 * sin((A+B)/2) * cos((A-B)/2) =1
cosA+cosB = 2 * cos((A+B)/2) * cos((A-B)/2) =x
两式相除,得:
tan((A+B)/2) = 1/x
tan(A+B) = ( 2 * tan((A+B)/2) ) / (1 - [tan((A+B)/2)]^2 )
A+B的范围是90-270周期为360度
所以x范围为[-1,1]