对于R上可导的任意函数f(x),若x不等于1恒满足(x-1)f'(x)>0,证明f(0)+f(2)>2f(1)

王朝知道·作者佚名  2012-01-18
窄屏简体版  字體: |||超大  
 
分類: 教育/科學 >> 學習幫助
 
參考答案:

本题可以结合几何直观来解释,在平面直角坐标系中构建一个梯形,可见F(0)和F(2)分别是梯形的上底和下底,和除以2为梯形中位线,因此只要证明F(1)短于梯形中位线即可,也就是证明F(X)是凹函数。当X小于1时,F(X)的导数小于○,当X大于1时,F(X)的导数小于0,因此,曲线形状是先单调下降经过1点达到最小值,然后再单调上升,1点为驻点。

小贴士:① 若网友所发内容与教科书相悖,请以教科书为准;② 若网友所发内容与科学常识、官方权威机构相悖,请以后者为准;③ 若网友所发内容不正确或者违背公序良俗,右下举报/纠错。
 
 
 
免责声明:本文为网络用户发布,其观点仅代表作者个人观点,与本站无关,本站仅提供信息存储服务。文中陈述内容未经本站证实,其真实性、完整性、及时性本站不作任何保证或承诺,请读者仅作参考,并请自行核实相关内容。
 
 
© 2005- 王朝網路 版權所有 導航