求证tan(x-y)+tan(y-z)+tan(z-x)=tan(x-y)tan(y-z)tan(z-x)
注(x-y+y-z+z-x)=0
有一公式:tan(x-y)=tanx-tany[除以]1-tanxtany
參考答案:∵(x-y+y-z+z-x)=0∴(x-y)+(y-z)=-(z-x)取正切值,得
[(tan(x-y)-tan(y-z))/(1-tan(x-y)tan(y-z))]=-tan(z-x)即
tan(x-y)-tan(y-z)=-tan(z-x)+tan(x-y)tan(y-z)tan(z-x) 即
tan(x-y)+tan(y-z)+tan(z-x)=tan(x-y)tan(y-z)tan(z-x)