设f〔X〕=1/2^X+根号2 ,利用等差公式求和的方法,算出f(-5)+f(-4)+…+f(0)+…+f(5)+f(6)之值
參考答案:f(-5)+f(-4)+…+f(0)+…+f(5)+f(6)=12根号2
+1/2^(-5)+1/2^(-4)+ 1/2^(-3)+ 1/2^(-2)+1/2^(-1)+1/2^0+1/2^1+1/2^2+1/2^3+1/2^4+1/2^5+1/2^6=12根号2+〔1/2^(-5)(1-1/2^12)〕/(1-1/2)=12根号2+2^6-1/2^6
这道题明明是用等比数列啊