由a>2得
loga(a+1)>0,loga(a-1)>0
所以:
loga(a+1)*loga(a-1)
<[loga(a+1)+loga(a-1)]^2/4 (均值不等式)
=[loga(a^2-1)]^2/4
<[loga(a^2)]^2/4
=2^2/4
=1
由a>2得
loga(a+1)>0,loga(a-1)>0
所以:
loga(a+1)*loga(a-1)
<[loga(a+1)+loga(a-1)]^2/4 (均值不等式)
=[loga(a^2-1)]^2/4
<[loga(a^2)]^2/4
=2^2/4
=1