10月4日 19:50 克莱姆法则
克莱姆法则[Cramer's Rule]是瑞士数学家克莱姆[1704-1752]於1750年,在他的《线性代数分析导言》中发表的。他在确定五个点的二次曲线方程A + Bx + Cy + Dy2 + Exy + x2 = 0的系数时,提出了本法则:
假若有n个未知数,n个方程组成的方程组:
a11x1+a12x2+...+a1nxn = b1,
a21x1+a22x2+...+a2nxn = b2,
......
an1x1+an2x2+...+annxn = bn.
而当它的系数行列式D不等於0的时候,根据克莱姆法则,它的解是。当中的Di[i = 1,2,……,n]是D中的a 1i,a 2i,……a ni依次换成b1,b2,……bn所的行列式。
其实莱布尼兹[1693],以及马克劳林[1748]亦知道这个法则,但他们的记法不如克莱姆。