好象是数学上和函数有关的```
參考答案:当为“介值定理”,是闭区间上连续函数的性质之一。
参考 :
定理2 (介值定理)设函数y=f(x)在闭区间[a,b]上连续,且在这区间的端点取不同的函数值:
f(a)=A,f(b)=B,且A≠B
那么,不论C是A与B之间的怎样一个数,在开区间(a,b)内至少有一点ξ,使得
f(ξ)=C (a<ξ<b)。
特别是,如果f(a)与f(b)异号,那么在开区间(a,b)内至少有一点ξ,使得
f(ξ)=0 (a<ξ<b)。
这个定理的几何意义是:在[a,b]上连续的曲线与水平直线y=C(A<C<B)至少相交于一点。特别是,如果A与B异号,则连续曲线与x轴至少相交一次。