虚心请教:已知x>0,y>0,x≠y,若a、x、y、b成等差数列,c、x、y、d成等比数列,比较a+b与c+d的大小

王朝知道·作者佚名  2009-08-03
窄屏简体版  字體: |||超大  
 
分類: 教育/學業/考試 >> 學習幫助
 
問題描述:

已知x>0,y>0,x≠y,若a、x、y、b成等差数列,c、x、y、d成等比数列,比较a+b与c+d的大小

请帮助

感激不尽

參考答案:

由等差数列性质知

a+b=x+y

由等比数列性质知

c+d=x^2/y+y^2/x

又由于x>0,y>0,x≠y

所以

(c+d)-(a+b)=(x^3+y^3)/xy - (x+y)通分化简

=[(x-y)^2 ×(x+y)]/xy > 0

即 c+d > a+b

小贴士:① 若网友所发内容与教科书相悖,请以教科书为准;② 若网友所发内容与科学常识、官方权威机构相悖,请以后者为准;③ 若网友所发内容不正确或者违背公序良俗,右下举报/纠错。
 
 
 
免责声明:本文为网络用户发布,其观点仅代表作者个人观点,与本站无关,本站仅提供信息存储服务。文中陈述内容未经本站证实,其真实性、完整性、及时性本站不作任何保证或承诺,请读者仅作参考,并请自行核实相关内容。
 
 
© 2005- 王朝網路 版權所有 導航