
RNA干扰(RNA interference, RNAi)是指在进化过程中高度保守的、由双链RNA(double-stranded RNA,dsRNA)诱发的、同源mRNA高效特异性降解的现象。近几年来RNAi研究取得了突破性进展,被《Science》杂志评为2001年的十大科学进展之一,并名列2002年十大科学进展之首。由于使用RNAi技术可以特异性剔除或关闭特定基因的表达,所以该技术已被广泛用于探索基因功能和传染性疾病及恶性肿瘤的基因治疗领域。
简单的说是指一种分子生物学上由双链RNA诱发的基因沉默现象。当细胞中导入与内源性mRNA编码区同源的双链RNA时,该mRNA发生降解而导致基因表达沉默。与其它基因沉默现象不同的是,在植物和线虫中,RNAi具有传递性,可在细胞之间传播,此现象被称作系统性RNA干扰(systemic RNAi)
RNAi与转录后基因沉默(post-transcriptional gene silencing and transgene silencing)在分子层次上被证实是同一种现象。
RNA干扰是基因转录后沉默的一种方式,是生物界古老而且进化的高度保守的现象之一。RNAi是通过siRNA介导的特异性高效抑制基因表达途径,由siRNA介导识别并靶向切割同源性靶mRNA。RNAi具有生物催化反应特征,反应中需要多种蛋白因子以及ATP参与。RNAi在基因功能研究和基因药物应用具有广泛的前景。
1 RNAi的发现
RNAi是在研究秀丽新小杆线虫(C. elegans)反义RNA(antisense RNA)的过程中发现的,由dsRNA介导的同源RNA降解过程。1995年,Guo等发现注射正义RNA(sense RNA)和反义RNA均能有效并特异性地抑制秀丽新小杆线虫par-1基因的表达,该结果不能使用反义RNA技术的理论做出合理解释。直到1998年,Fire等证实Guo等发现的正义RNA抑制同源基因表达的现象是由于体外转录制备的RNA中污染了微量dsRNA而引发,并将这一现象命名为RNAi。
此后dsRNA介导的RNAi现象陆续发现于真菌、果蝇、拟南芥、锥虫、水螅、涡虫、斑马鱼等多种真核生物中,并逐渐证实植物中的转录后基因沉默(posttranscriptional gene silencing,PTGS)、共抑制(cosuppression)及RNA介导的病毒抗性、真菌的抑制(quelling)现象均属于RNAi在不同物种的表现形式。
1999年,Hamilton等首次在PTGS植株中发现了长度为25nt的RNA中间产物。2000年,Zamore和Hammond等使用体外培养的果蝇细胞进行研究发现,外源性dsRNA通过耗能过程降解成21-23nt的小干扰RNA(small interfering RNA,siRNA)引发RNAi。
2000年,Wianny和Svoboda等分别证实在小鼠胚胎细胞和卵母细胞中dsRNA能引发RNAi效应。2001年,Elbashir等证实21nt的siRNA可在避免激活dsRNA依赖的蛋白激酶(dsRNA-dependent protein kinase,PKR)和2',5'-寡聚腺苷酸合成酶(2',5'-oligoadenylate synthetase,2',5'-OAS)信号转导途径的同时,有效抑制人胚肾293细胞、Hela细胞等哺乳动物细胞中目的基因的表达。
2002年,Brummelkamp等首次使用小鼠H1启动子构建了小发卡RNA(small hairpin RNA,shRNA)表达载体pSUPER,并证实转染该载体可有效、特异性地剔除哺乳动物细胞内目的基因的表达,为利用RNAi技术进行基因治疗研究奠定了基础。
2 RNAi的应用
2.1 RNAi在探索基因功能中的应用:人类基因组计划的完成标志着后基因组时代的来临。阐明人类基因组中功能基因表达产物的生物学作用对医学发展有着深远意义。在RNAi技术出现以前,基因敲除(gene knockout)是主要的反向遗传学(reverse genetics)研究手段,但其技术难度较高、操作复杂、周期长。由于RNAi技术可以利用siRNA或siRNA表达载体快速、经济、简便的以序列特异方式剔除目的基因表达,所以现在已经成为探索基因功能的重要研究手段。同时siRNA表达文库构建方法的建立,使得利用RNAi技术进行高通量筛选成为可能,对阐明信号转导通路、发现新的药物作用靶点有重要意义。
2.2 RNAi在基因治疗领域中的应用: RNAi作为一种高效的序列特异性基因剔除技术在传染性疾病和恶性肿瘤基因治疗领域发展极为迅速。在利用RNAi技术对HIV-1、乙型肝炎、丙型肝炎等进行基因治疗研究中发现,选择病毒基因组中与人类基因组无同源性的序列作为抑制序列可在抑制病毒复制的同时避免对正常组织的毒副作用。同时将抑制序列选择在特定的位点,可对部分有明确基因突变的恶性肿瘤细胞如含有BCL/ABL或AML1/MTG8融合基因的白血病细胞产生凋亡诱导作用。此外尚可通过使用肿瘤特异性启动子如hTERT启动子、survivin启动子或组织特异性启动子如酪氨酸酶启动子、骨钙素启动子引导针对某些癌基因或抗凋亡分子的siRNA或shRNA表达,从而达到特异性杀伤肿瘤细胞的目的。
3 RNAi在整形外科领域的应用前景
已证实N-Ras或BRAF的激活型突变是引发黑素瘤的主要病因,其中66%的病例为BRAF激酶作用域突变。而约80%的BRAF突变病例是因胸腺嘧啶突变为腺嘌呤造成第599位的缬氨酸突变为谷氨酸所致。使用RNAi技术剔除黑素瘤细胞的BRAF表达,不仅抑制了肿瘤细胞生长,而且减弱了其侵袭能力,为黑素瘤基因治疗奠定了基础。
最近研究表明趋化因子受体CXCR4是乳腺癌转移的重要调节因素,其配体CXCL12可趋化肿瘤细胞并调节其增生和侵袭特性。使用RNAi干扰技术剔除CXCR4证实该分子为原位移植肿瘤生长和转移所必需。此外,剔除BCRP表达可以逆转其介导的肿瘤耐药。
瘢痕疙瘩是一种较为难治的疾病,目前尚无有确切疗效的治疗方法。使用特异性siRNA剔除TGF-βII型受体表达可以抑制角膜成纤维细胞表达纤维粘连蛋白并降低其迁移能力。剔除CTGF表达可使皮肤成纤维细胞内I型和III型前胶原蛋白、碱性成纤维细胞生长因子、组织金属蛋白酶抑制因子(tissue inhibitor of metalloproteinase,TIMP)-1,TIMP-2和TIMP-3等基因表达水平降低。这些结果提示TGF-β信号转导通路和CTGF均可能是瘢痕疙瘩治疗的潜在靶点。
综上所述,RNAi技术不仅在黑素瘤、乳腺癌等恶性肿瘤基因治疗中有较好的应用前景,而且在肿瘤和瘢痕疙瘩治疗靶点的高通量筛选过程中有较高的应用价值
机理siRNA
RNA干扰作用是通过一类较稳定的中间介质实现的。对植物的研究证明,双链RNA复合体先降解成为35nt左右的小RNA分子,然后他们通过序列互补与mRNA结合,从而导致mRNA降解。对果蝇的研究证明,长度为21~23nt的小RNA分子是引起RNA干扰现象的直接原因。这种小RNA分子被称之为小干扰RNA(small interfering RNA,siRNA)。
在RNA干扰中一个非常重要的酶是RNaseIII核酶家族的Dicer。它可与双链RNA结合,并将其剪切成21~23nt及3'端突出的小分子RNA片断,即siRNA。随后siRNA与若干个蛋白组成的,RNA引起的称之为RNA诱导沉默复合体(RNA-induced silencing complex,RISC)结合,解旋成单链,并由该复合体主导RNAi效应[11]。RISC被活化后,活化型RISC受已成单链的siRNA引导(guide strand),序列特异性地结合在标靶mRNA上并切断标靶mRNA,引发靶mRNA的特异性分解。
迄今为止已鉴定出包括Dicer在内的若干个与RNAi有关的蛋白因子。在果蝇(Drosophila melanogaster)RISC中,已知存在着称为Argonaute2(AGO2)的因子,AGO2蛋白的表达受到抑制时,RNAi效应缺失,也就是说AGO2是果蝇RNAi机制的必须因子。研究表明Argonaute家族蛋白具有RNA切割酶活性(slicer activity),RNAi机制正是由Argonaute家族蛋白的RNA切割酶活性主导。另外,几个RNA解旋酶(RNA helicase)也被鉴定为参与RNAi机制的因子。在秀丽隐杆线虫(C. elegans)的RNAi中必须的因子有EGO1。这是一种RdRP(RNA-dependent RNA Polymerase),植物中也存在该蛋白同系物。RNAi中RdRP是将标靶mRNA作为模板,以导入的dsRNA(或siRNA)作为引物合成RNA,在细胞内针对于标靶mRNA合成新siRNA的酶。这一反应在一些生物的RNAi中为必须,但RdRP活性在人和果蝇的RNAi中是非必须的,这说明在不同物种之间RNAi机制的基本框架虽然相同,但存在着微妙差异。
microRNA
在真核生物当中,还存在另外一种小分子RNA(microRNA)也能引起RNA干扰现象。microRNA大多20-22nt长,前体具有类似发夹性的茎环结构。microRNA产生于该茎环结构的双链区。其特点与siRNA基本上相同。
RNA干扰的作用
2001年,Tuschl等将siRNA导入到哺乳动物细胞中并由此解决了在哺乳细胞内导入长的双链RNA时引发的干扰素效应,由此拓展了RNAi在基因治疗上应用前景。RNAi机制普遍存在于动植物,尤其是低等生物中。因此被认为是进化上相对保守的基因表达调控机制。一种假说为,RNAi机制是作为在RNA水平上抵御病毒入侵的防御机制而存在的。在病毒自身基因组所包含的,或在病毒复制过程中产生的双链RNA可以被Dicer识别,从而引起病毒RNA降解。但是许多病毒为抵抗宿主的RNA干扰机制,会产生抑制宿主RNA干扰的蛋白,以保护病毒基因在宿主体内的顺利复制。已经发现的可以抑制宿主RNA干扰的病毒蛋白有potyviruses编码的HC-PRO蛋白、马铃薯X病毒编码的Cmv2b蛋白、兽棚病毒编码的B2蛋白等。RNA干扰也是抑制破坏基因结构的一种DNA片段转座子活性的重要方式。转座子通常以逆转座的方式在基因组中扩增。在逆转座过程中产生的双链RNA分子可以被Dicer识别,从而被降解。
在目前,发现RNAi机制中的相关一些因子如内源性双链RNA及蛋白因子可以在多种层次上对基因表达进行调控,其范围已经超越了PTGS(post transcriptional gene silencing),如RNAi机制同样参与了转录水平上的基因表达调控过程中。
成功RNAi的关键点
1.设计合成有效的siRNA
RNAi的核心需要siRNA对相应mRNA进行有效的结合和作用。siRNA的设计合成首先很重要。siRNA的设计可以通过检索,优先选用经过验证的siRNA或设计多对siRNA,同时设置阴性对照(排除非特异沉默现象)和阳性对照(确认整个实验体系的有效性)。siRNA的合成需要注意的是一定要选用高纯度的siRNA,siRNA的纯度直接关系到转染效率和沉默效率。
2.选择合适的siRNA转染试剂
将足量合适的siRNA转染入细胞是RNAi实验成败的关键。针对靶细胞类型,选择好的转染试剂和优化的操作对siRNA实验的成功至关重要。根据siRNA转染与DNA转染的差异,建议选择专门针对siRNA的高效、低毒转染试剂。