分享
 
 
 

椭圆坐标系

王朝百科·作者佚名  2010-08-25
窄屏简体版  字體: |||超大  

椭圆坐标系是一种二维正交坐标系。其坐标曲线是共焦的椭圆与双曲线。椭圆坐标系的两个焦点 F1 与 F2 的直角坐标 (x,y),通常分别设定为 (-a,0) 与 (a,0) ,都处于直角坐标系的 x-轴。

基本定义椭圆坐标 最常见的定义是

, ; 其中, , 。

三角恒等式表明, 的等值曲线形成了椭圆,而 的等值曲线则形成了双曲线:

, 。

标度因子椭圆坐标 与 的标度因子相等:

, 为了简化标度因子的计算,可以用二倍角公式来等价地表达为

。 无穷小面积元素等于

。拉普拉斯算子是

。 其它微分算子,例如 与 ,都可以用椭圆坐标表达,只需要将标度因子代入正交坐标条目内对应的一般公式。

第二种定义另外有一种,在直觉上,比较赋有几何性的椭圆坐标系 ;其中, , 。同样地, 的等值曲线是椭圆,而 的等值曲线是双曲线。在这里, 必须属于区间 ,而 必须大于或等于 。

使用椭圆坐标,任何在 xy-平面上的点 ,其与两个焦点的距离 , 有一个很简单的关系(回想两个焦点 与 的坐标分别为 与 ):

, 。 或者,

, 。 第二种椭圆坐标有一个缺点,那就是它与直角坐标并不保持一一对应关系:

, 。

第二种标度因子第二种椭圆坐标 的标度因子是

, 。 所以,无穷小面积元素等于

。 拉普拉斯算子是

。 其它微分算子,例如 与 ,都可以用第二种椭圆坐标表达,只需要将第二种标度因子代入正交坐标条目内对应的一般公式。

外推至更高维数椭圆坐标系是几种三维正交坐标系的基础。将椭圆坐标系往 z-轴方向投射,则可以得到椭圆柱坐标系。将椭圆坐标系绕着 x-轴旋转,就可以得到长球面坐标系,而绕着 y-轴旋转,又可以得到扁球面坐标系;在这里,x-轴是连接两个焦点的直轴,y-轴是在两个焦点中间的直轴。

应用椭圆坐标最经典的用法是在解析像拉普拉斯方程或亥姆霍兹方程这类的偏微分方程式。在这些方程式里,椭圆坐标允许分离变量法的使用。举一个典型的例题,有一块宽度为 的平板导体,请问其周围的电场为什么?应用椭圆坐标,我们可以精致地解析这例题。

 
 
 
免责声明:本文为网络用户发布,其观点仅代表作者个人观点,与本站无关,本站仅提供信息存储服务。文中陈述内容未经本站证实,其真实性、完整性、及时性本站不作任何保证或承诺,请读者仅作参考,并请自行核实相关内容。
2023年上半年GDP全球前十五强
 百态   2023-10-24
美众议院议长启动对拜登的弹劾调查
 百态   2023-09-13
上海、济南、武汉等多地出现不明坠落物
 探索   2023-09-06
印度或要将国名改为“巴拉特”
 百态   2023-09-06
男子为女友送行,买票不登机被捕
 百态   2023-08-20
手机地震预警功能怎么开?
 干货   2023-08-06
女子4年卖2套房花700多万做美容:不但没变美脸,面部还出现变形
 百态   2023-08-04
住户一楼被水淹 还冲来8头猪
 百态   2023-07-31
女子体内爬出大量瓜子状活虫
 百态   2023-07-25
地球连续35年收到神秘规律性信号,网友:不要回答!
 探索   2023-07-21
全球镓价格本周大涨27%
 探索   2023-07-09
钱都流向了那些不缺钱的人,苦都留给了能吃苦的人
 探索   2023-07-02
倩女手游刀客魅者强控制(强混乱强眩晕强睡眠)和对应控制抗性的关系
 百态   2020-08-20
美国5月9日最新疫情:美国确诊人数突破131万
 百态   2020-05-09
荷兰政府宣布将集体辞职
 干货   2020-04-30
倩女幽魂手游师徒任务情义春秋猜成语答案逍遥观:鹏程万里
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案神机营:射石饮羽
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案昆仑山:拔刀相助
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案天工阁:鬼斧神工
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案丝路古道:单枪匹马
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案镇郊荒野:与虎谋皮
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案镇郊荒野:李代桃僵
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案镇郊荒野:指鹿为马
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案金陵:小鸟依人
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案金陵:千金买邻
 干货   2019-11-12
 
推荐阅读
 
 
 
>>返回首頁<<
靜靜地坐在廢墟上,四周的荒凉一望無際,忽然覺得,淒涼也很美
© 2005- 王朝網路 版權所有