分享
 
 
 

RFC1057 - RPC: Remote Procedure Call Protocol specification: Version 2

王朝other·作者佚名  2008-05-31
窄屏简体版  字體: |||超大  

Network Working Group Sun Microsystems, Inc.

Request For Comments: 1057 June 1988

Obsoletes: RFC1050

RPC: Remote Procedure Call

Protocol Specification

Version 2

STATUS OF THIS MEMO

This RFCdescribes a standard that Sun Microsystems and others are

using, and is one we wish to propose for the Internet's

consideration. This memo is not an Internet standard at this time.

Distribution of this memo is unlimited.

1. INTRODUCTION

This document specifies version two of the message protocol used in

Sun's Remote Procedure Call (RPC) package. The message protocol is

specified with the eXternal Data Representation (XDR) language [9].

This document assumes that the reader is familiar with XDR. It does

not attempt to justify remote procedure calls systems or describe

their use. The paper by Birrell and Nelson [1] is recommended as an

Excellent background for the remote procedure call concept.

2. TERMINOLOGY

This document discusses clients, calls, servers, replies, services,

programs, procedures, and versions. Each remote procedure call has

two sides: an active client side that sends the call to a server,

which sends back a reply. A network service is a collection of one

or more remote programs. A remote program implements one or more

remote procedures; the procedures, their parameters, and results are

documented in the specific program's protocol specification (see

Appendix A for an example). A server may support more than one

version of a remote program in order to be compatible with changing

protocols.

For example, a network file service may be composed of two programs.

One program may deal with high-level applications such as file system

Access control and locking. The other may deal with low-level file

input and output and have procedures like "read" and "write". A

client of the network file service would call the procedures

associated with the two programs of the service on behalf of the

client.

The terms client and server only apply to a particular transaction; a

particular hardware entity (host) or software entity (process or

program) could operate in both roles at different times. For

example, a program that supplies remote execution service could also

be a client of a network file service. On the other hand, it may

simplify software to separate client and server functionality into

separate libraries or programs.

3. THE RPC MODEL

The Sun RPC protocol is based on the remote procedure call model,

which is similar to the local procedure call model. In the local

case, the caller places arguments to a procedure in some well-

specified location (such as a register window). It then transfers

control to the procedure, and eventually regains control. At that

point, the results of the procedure are extracted from the well-

specified location, and the caller continues execution.

The remote procedure call model is similar. One thread of control

logically winds through two processes: the caller's process, and a

server's process. The caller process first sends a call message to

the server process and waits (blocks) for a reply message. The call

message includes the procedure's parameters, and the reply message

includes the procedure's results. Once the reply message is

received, the results of the procedure are extracted, and caller's

execution is resumed.

On the server side, a process is dormant awaiting the arrival of a

call message. When one arrives, the server process extracts the

procedure's parameters, computes the results, sends a reply message,

and then awaits the next call message.

In this model, only one of the two processes is active at any given

time. However, this model is only given as an example. The Sun RPC

protocol makes no restrictions on the concurrency model implemented,

and others are possible. For example, an implementation may choose

to have RPC calls be asynchronous, so that the client may do useful

work while waiting for the reply from the server. Another

possibility is to have the server create a separate task to process

an incoming call, so that the original server can be free to receive

other requests.

There are a few important ways in which remote procedure calls differ

from local procedure calls:

1. Error handling: failures of the remote server or network must be

handled when using remote procedure calls.

2. Global variables and side-effects: since the server does not have

access to the client's address space, hidden arguments cannot be

passed as global variables or returned as side effects.

3. Performance: remote procedures usually operate one or more orders

of magnitude slower than local procedure calls.

4. Authentication: since remote procedure calls can be transported

over insecure networks, authentication may be necessary.

The conclusion is that even though there are tools to automatically

generate client and server libraries for a given service, protocols

must still be designed carefully.

4. TRANSPORTS AND SEMANTICS

The RPC protocol can be implemented on several different transport

protocols. The RPC protocol does not care how a message is passed

from one process to another, but only with specification and

interpretation of messages. On the other hand, the application may

wish to oBTain information about (and perhaps control over) the

transport layer through an interface not specified in this document.

For example, the transport protocol may impose a restriction on the

maximum size of RPC messages, or it may be stream-oriented like TCP

with no size limit. The client and server must agree on their

transport protocol choices, through a mechanism such as the one

described in Appendix A.

It is important to point out that RPC does not try to implement any

kind of reliability and that the application may need to be aware of

the type of transport protocol underneath RPC. If it knows it is

running on top of a reliable transport such as TCP [6], then most of

the work is already done for it. On the other hand, if it is running

on top of an unreliable transport such as UDP [7], it must implement

its own time-out, retransmission, and duplicate detection policies as

the RPC layer does not provide these services.

Because of transport independence, the RPC protocol does not attach

specific semantics to the remote procedures or their execution

requirements. Semantics can be inferred from (but should be

eXPlicitly specified by) the underlying transport protocol. For

example, consider RPC running on top of an unreliable transport such

as UDP. If an application retransmits RPC call messages after time-

outs, and does not receive a reply, it cannot infer anything about

the number of times the procedure was executed. If it does receive a

reply, then it can infer that the procedure was executed at least

once.

A server may wish to remember previously granted requests from a

client and not regrant them in order to insure some degree of

execute-at-most-once semantics. A server can do this by taking

advantage of the transaction ID that is packaged with every RPC

message. The main use of this transaction is by the client RPC layer

in matching replies to calls. However, a client application may

choose to reuse its previous transaction ID when retransmitting a

call. The server may choose to remember this ID after executing a

call and not execute calls with the same ID in order to achieve some

degree of execute-at-most-once semantics. The server is not allowed

to examine this ID in any other way except as a test for equality.

On the other hand, if using a "reliable" transport such as TCP, the

application can infer from a reply message that the procedure was

executed exactly once, but if it receives no reply message, it cannot

assume the remote procedure was not executed. Note that even if a

connection-oriented protocol like TCP is used, an application still

needs time-outs and reconnection to handle server crashes.

There are other possibilities for transports besides datagram- or

connection-oriented protocols. For example, a request-reply protocol

such as VMTP [2] is perhaps a natural transport for RPC. The Sun RPC

package currently uses both TCP and UDP transport protocols, with

experimentation underway on others such as ISO TP4 and TP0.

5. BINDING AND RENDEZVOUS INDEPENDENCE

The act of binding a particular client to a particular service and

transport parameters is NOT part of this RPC protocol specification.

This important and necessary function is left up to some higher-level

software. (The software may use RPC itself; see Appendix A.)

Implementors could think of the RPC protocol as the jump-subroutine

instruction ("JSR") of a network; the loader (binder) makes JSR

useful, and the loader itself uses JSR to accomplish its task.

Likewise, the binding software makes RPC useful, possibly using RPC

to accomplish this task.

6. AUTHENTICATION

The RPC protocol provides the fields necessary for a client to

identify itself to a service, and vice-versa, in each call and reply

message. Security and access control mechanisms can be built on top

of this message authentication. Several different authentication

protocols can be supported. A field in the RPC header indicates

which protocol is being used. More information on specific

authentication protocols is in section 9: "Authentication Protocols".

7. RPC PROTOCOL REQUIREMENTS

The RPC protocol must provide for the following:

(1) Unique specification of a procedure to be called.

(2) Provisions for matching response messages to request messages.

(3) Provisions for authenticating the caller to service and vice-

versa.

Besides these requirements, features that detect the following are

worth supporting because of protocol roll-over errors, implementation

bugs, user error, and network administration:

(1) RPC protocol mismatches.

(2) Remote program protocol version mismatches.

(3) Protocol errors (such as misspecification of a procedure's

parameters).

(4) Reasons why remote authentication failed.

(5) Any other reasons why the desired procedure was not called.

7.1 RPC Programs and Procedures

The RPC call message has three unsigned integer fields -- remote

program number, remote program version number, and remote procedure

number -- which uniquely identify the procedure to be called.

Program numbers are administered by some central authority (like

Sun). Once implementors have a program number, they can implement

their remote program; the first implementation would most likely have

the version number 1. Because most new protocols evolve, a version

field of the call message identifies which version of the protocol

the caller is using. Version numbers make speaking old and new

protocols through the same server process possible.

The procedure number identifies the procedure to be called. These

numbers are documented in the specific program's protocol

specification. For example, a file service's protocol specification

may state that its procedure number 5 is "read" and procedure number

12 is "write".

Just as remote program protocols may change over several versions,

the actual RPC message protocol could also change. Therefore, the

call message also has in it the RPC version number, which is always

equal to two for the version of RPC described here.

The reply message to a request message has enough information to

distinguish the following error conditions:

(1) The remote implementation of RPC does not speak protocol version

2. The lowest and highest supported RPC version numbers are returned.

(2) The remote program is not available on the remote system.

(3) The remote program does not support the requested version number.

The lowest and highest supported remote program version numbers are

returned.

(4) The requested procedure number does not exist. (This is usually

a client side protocol or programming error.)

(5) The parameters to the remote procedure appear to be garbage from

the server's point of view. (Again, this is usually caused by a

disagreement about the protocol between client and service.)

7.2 Authentication

Provisions for authentication of caller to service and vice-versa are

provided as a part of the RPC protocol. The call message has two

authentication fields, the credentials and verifier. The reply

message has one authentication field, the response verifier. The RPC

protocol specification defines all three fields to be the following

opaque type (in the eXternal Data Representation (XDR) language [9]):

enum auth_flavor {

AUTH_NULL = 0,

AUTH_UNIX = 1,

AUTH_SHORT = 2,

AUTH_DES = 3

/* and more to be defined */

};

struct opaque_auth {

auth_flavor flavor;

opaque body<400>;

};

In other Words, any "opaque_auth" structure is an "auth_flavor"

enumeration followed by bytes which are opaque to (uninterpreted by)

the RPC protocol implementation.

The interpretation and semantics of the data contained within the

authentication fields is specified by individual, independent

authentication protocol specifications. (Section 9 defines the

various authentication protocols.)

If authentication parameters were rejected, the reply message

contains information stating why they were rejected.

7.3 Program Number Assignment

Program numbers are given out in groups of hexadecimal 20000000

(decimal 536870912) according to the following chart:

0 - 1fffffff defined by Sun

20000000 - 3fffffff defined by user

40000000 - 5fffffff transient

60000000 - 7fffffff reserved

80000000 - 9fffffff reserved

a0000000 - bfffffff reserved

c0000000 - dfffffff reserved

e0000000 - ffffffff reserved

The first group is a range of numbers administered by Sun

Microsystems and should be identical for all sites. The second range

is for applications peculiar to a particular site. This range is

intended primarily for debugging new programs. When a site develops

an application that might be of general interest, that application

should be given an assigned number in the first range. The third

group is for applications that generate program numbers dynamically.

The final groups are reserved for future use, and should not be used.

7.4 Other Uses of the RPC Protocol

The intended use of this protocol is for calling remote procedures.

Normally, each call message is matched with a reply message.

However, the protocol itself is a message-passing protocol with which

other (non-procedure call) protocols can be implemented. Sun

currently uses, or perhaps abuses, the RPC message protocol for the

batching (or pipelining) and broadcast remote procedure calls.

7.4.1 Batching

Batching is useful when a client wishes to send an arbitrarily large

sequence of call messages to a server. Batching typically uses

reliable byte stream protocols (like TCP) for its transport. In the

case of batching, the client never waits for a reply from the server,

and the server does not send replies to batch calls. A sequence of

batch calls is usually terminated by a legitimate remote procedure

call operation in order to flush the pipeline and get positive

acknowledgement.

7.4.2 Broadcast Remote Procedure Calls

In broadcast protocols, the client sends a broadcast call to the

network and waits for numerous replies. This requires the use of

packet-based protocols (like UDP) as its transport protocol. Servers

that support broadcast protocols only respond when the call is

successfully processed, and are silent in the face of errors.

Broadcast calls use the Port Mapper RPC service to achieve their

semantics. See Appendix A for more information.

8. THE RPC MESSAGE PROTOCOL

This section defines the RPC message protocol in the XDR data

description language [9].

enum msg_type {

CALL = 0,

REPLY = 1

};

A reply to a call message can take on two forms: The message was

either accepted or rejected.

enum reply_stat {

MSG_ACCEPTED = 0,

MSG_DENIED = 1

};

Given that a call message was accepted, the following is the status

of an attempt to call a remote procedure.

enum accept_stat {

SUCCESS = 0, /* RPC executed successfully */

PROG_UNAVAIL = 1, /* remote hasn't exported program */

PROG_MISMATCH = 2, /* remote can't support version # */

PROC_UNAVAIL = 3, /* program can't support procedure */

GARBAGE_ARGS = 4 /* procedure can't decode params */

};

Reasons why a call message was rejected:

enum reject_stat {

RPC_MISMATCH = 0, /* RPC version number != 2 */

AUTH_ERROR = 1 /* remote can't authenticate caller */

};

Why authentication failed:

enum auth_stat {

AUTH_BADCRED = 1, /* bad credentials (seal broken) */

AUTH_REJECTEDCRED = 2, /* client must begin new session */

AUTH_BADVERF = 3, /* bad verifier (seal broken) */

AUTH_REJECTEDVERF = 4, /* verifier expired or replayed */

AUTH_TOOWEAK = 5 /* rejected for security reasons */

};

The RPC message:

All messages start with a transaction identifier, xid, followed by a

two-armed discriminated union. The union's discriminant is a

msg_type which switches to one of the two types of the message. The

xid of a REPLY message always matches that of the initiating CALL

message. NB: The xid field is only used for clients matching reply

messages with call messages or for servers detecting retransmissions;

the service side cannot treat this id as any type of sequence number.

struct rpc_msg {

unsigned int xid;

union switch (msg_type mtype) {

case CALL:

call_body cbody;

case REPLY:

reply_body rbody;

} body;

};

Body of an RPC call:

In version 2 of the RPC protocol specification, rpcvers must be equal

to 2. The fields prog, vers, and proc specify the remote program,

its version number, and the procedure within the remote program to be

called. After these fields are two authentication parameters: cred

(authentication credentials) and verf (authentication verifier). The

two authentication parameters are followed by the parameters to the

remote procedure, which are specified by the specific program

protocol.

struct call_body {

unsigned int rpcvers; /* must be equal to two (2) */

unsigned int prog;

unsigned int vers;

unsigned int proc;

opaque_auth cred;

opaque_auth verf;

/* procedure specific parameters start here */

};

Body of a reply to an RPC call:

union reply_body switch (reply_stat stat) {

case MSG_ACCEPTED:

accepted_reply areply;

case MSG_DENIED:

rejected_reply rreply;

} reply;

Reply to an RPC call that was accepted by the server:

There could be an error even though the call was accepted. The first

field is an authentication verifier that the server generates in

order to validate itself to the client. It is followed by a union

whose discriminant is an enum accept_stat. The SUCCESS arm of the

union is protocol specific. The PROG_UNAVAIL, PROC_UNAVAIL, and

GARBAGE_ARGS arms of the union are void. The PROG_MISMATCH arm

specifies the lowest and highest version numbers of the remote

program supported by the server.

struct accepted_reply {

opaque_auth verf;

union switch (accept_stat stat) {

case SUCCESS:

opaque results[0];

/*

* procedure-specific results start here

*/

case PROG_MISMATCH:

struct {

unsigned int low;

unsigned int high;

} mismatch_info;

default:

/*

* Void. Cases include PROG_UNAVAIL, PROC_UNAVAIL,

* and GARBAGE_ARGS.

*/

void;

} reply_data;

};

Reply to an RPC call that was rejected by the server:

The call can be rejected for two reasons: either the server is not

running a compatible version of the RPC protocol (RPC_MISMATCH), or

the server refuses to authenticate the caller (AUTH_ERROR). In case

of an RPC version mismatch, the server returns the lowest and highest

supported RPC version numbers. In case of refused authentication,

failure status is returned.

union rejected_reply switch (reject_stat stat) {

case RPC_MISMATCH:

struct {

unsigned int low;

unsigned int high;

} mismatch_info;

case AUTH_ERROR:

auth_stat stat;

};

9. AUTHENTICATION PROTOCOLS

As previously stated, authentication parameters are opaque, but

open-ended to the rest of the RPC protocol. This section defines

some "flavors" of authentication implemented at (and supported by)

Sun. Other sites are free to invent new authentication types, with

the same rules of flavor number assignment as there is for program

number assignment.

9.1 Null Authentication

Often calls must be made where the client does not know its identity

or the server does not care who the client is. In this case, the

flavor value (the discriminant of the opaque_auth's union) of the RPC

message's credentials, verifier, and reply verifier is "AUTH_NULL".

The bytes of the opaque_auth's body are undefined. It is recommended

that the opaque length be zero.

9.2 UNIX Authentication

The client may wish to identify itself as it is identified on a

UNIX(tm) system. The value of the credential's discriminant of an

RPC call message is "AUTH_UNIX". The bytes of the credential's

opaque body encode the the following structure:

struct auth_unix {

unsigned int stamp;

string machinename<255>;

unsigned int uid;

unsigned int gid;

unsigned int gids<16>;

};

The "stamp" is an arbitrary ID which the caller machine may generate.

The "machinename" is the name of the caller's machine (like

"krypton"). The "uid" is the caller's effective user ID. The "gid"

is the caller's effective group ID. The "gids" is a counted array of

groups which contain the caller as a member. The verifier

accompanying the credentials should be of "AUTH_NULL" (defined

above). Note these credentials are only unique within a particular

domain of machine names, uids, and gids. Inter-domain naming is

beyond the scope of this document.

The value of the discriminant of the reply verifier received in the

reply message from the server may be "AUTH_NULL" or "AUTH_SHORT". In

the case of "AUTH_SHORT", the bytes of the reply verifier's string

encode an opaque structure. This new opaque structure may now be

passed to the server instead of the original "AUTH_UNIX" flavor

credentials. The server may keep a cache which maps shorthand opaque

structures (passed back by way of an "AUTH_SHORT" style reply

verifier) to the original credentials of the caller. The caller can

save network bandwidth and server cpu cycles by using the new

credentials.

The server may flush the shorthand opaque structure at any time. If

this happens, the remote procedure call message will be rejected due

to an authentication error. The reason for the failure will be

"AUTH_REJECTEDCRED". At this point, the client may wish to try the

original "AUTH_UNIX" style of credentials.

9.3 DES Authentication

UNIX authentication suffers from three major problems:

(1) The naming is too UNIX oriented.

(2) There is no universal name, uid, and gid space.

(3) There is no verifier, so credentials can easily be faked.

DES authentication attempts to address these problems.

9.3.1 Naming

The first problem is handled by addressing the client by a simple

string of characters instead of by an operating system specific

integer. This string of characters is known as the "netname" or

network name of the client. The server is not allowed to interpret

the contents of the client's name in any other way except to identify

the client. Thus, netnames should be unique for every client in the

Internet.

It is up to each operating system's implementation of DES

authentication to generate netnames for its users that insure this

uniqueness when they call upon remote servers. Operating systems

already know how to distinguish users local to their systems. It is

usually a simple matter to extend this mechanism to the network. For

example, a UNIX user at Sun with a user ID of 515 might be assigned

the following netname: "unix.515@sun.com". This netname contains

three items that serve to insure it is unique. Going backwards,

there is only one naming domain called "sun.com" in the Internet.

Within this domain, there is only one UNIX user with user ID 515.

However, there may be another user on another operating system, for

example VMS, within the same naming domain that, by coincidence,

happens to have the same user ID. To insure that these two users can

be distinguished we add the operating system name. So one user is

"unix.515@sun.com" and the other is "vms.515@sun.com".

The first field is actually a naming method rather than an operating

system name. It happens that today there is almost a one-to-one

correspondence between naming methods and operating systems. If the

world could agree on a naming standard, the first field could be the

name of that standard, instead of an operating system name.

9.3.2 DES Authentication Verifiers

Unlike UNIX authentication, DES authentication does have a verifier

so the server can validate the client's credential (and vice-versa).

The contents of this verifier is primarily an encrypted timestamp.

The server can decrypt this timestamp, and if it is close to the real

time, then the client must have encrypted it correctly. The only way

the client could encrypt it correctly is to know the "conversation

key" of the RPC session. And if the client knows the conversation

key, then it must be the real client.

The conversation key is a DES [5] key which the client generates and

passes to the server in its first RPC call. The conversation key is

encrypted using a public key scheme in this first transaction. The

particular public key scheme used in DES authentication is Diffie-

Hellman [3] with 192-bit keys. The details of this encryption method

are described later.

The client and the server need the same notion of the current time in

order for all of this to work, perhaps by using the Network Time

Protocol [4]. If network time synchronization cannot be guaranteed,

then the client can determine the server's time before beginning the

conversation using a simpler time request protocol.

The way a server determines if a client timestamp is valid is

somewhat complicated. For any other transaction but the first, the

server just checks for two things:

(1) the timestamp is greater than the one previously seen from the

same client.

(2) the timestamp has not expired.

A timestamp is expired if the server's time is later than the sum of

the client's timestamp plus what is known as the client's "window".

The "window" is a number the client passes (encrypted) to the server

in its first transaction. You can think of it as a lifetime for the

credential.

This explains everything but the first transaction. In the first

transaction, the server checks only that the timestamp has not

expired. If this was all that was done though, then it would be

quite easy for the client to send random data in place of the

timestamp with a fairly good chance of succeeding. As an added

check, the client sends an encrypted item in the first transaction

known as the "window verifier" which must be equal to the window

minus 1, or the server will reject the credential.

The client too must check the verifier returned from the server to be

sure it is legitimate. The server sends back to the client the

encrypted timestamp it received from the client, minus one second.

If the client gets anything different than this, it will reject it.

9.3.3 Nicknames and Clock Synchronization

After the first transaction, the server's DES authentication

subsystem returns in its verifier to the client an integer "nickname"

which the client may use in its further transactions instead of

passing its netname, encrypted DES key and window every time. The

nickname is most likely an index into a table on the server which

stores for each client its netname, decrypted DES key and window.

Though they originally were synchronized, the client's and server's

clocks can get out of sync again. When this happens the client RPC

subsystem most likely will get back "RPC_AUTHERROR" at which point it

should resynchronize.

A client may still get the "RPC_AUTHERROR" error even though it is

synchronized with the server. The reason is that the server's

nickname table is a limited size, and it may flush entries whenever

it wants. A client should resend its original credential in this

case and the server will give it a new nickname. If a server

crashes, the entire nickname table gets flushed, and all clients will

have to resend their original credentials.

9.3.4 DES Authentication Protocol Specification

There are two kinds of credentials: one in which the client uses its

full network name, and one in which it uses its "nickname" (just an

unsigned integer) given to it by the server. The client must use its

fullname in its first transaction with the server, in which the

server will return to the client its nickname. The client may use

its nickname in all further transactions with the server. There is no

requirement to use the nickname, but it is wise to use it for

performance reasons.

enum authdes_namekind {

ADN_FULLNAME = 0,

ADN_NICKNAME = 1

};

A 64-bit block of encrypted DES data:

typedef opaque des_block[8];

Maximum length of a network user's name:

const MAXNETNAMELEN = 255;

A fullname contains the network name of the client, an encrypted

conversation key and the window. The window is actually a lifetime

for the credential. If the time indicated in the verifier timestamp

plus the window has past, then the server should expire the request

and not grant it. To insure that requests are not replayed, the

server should insist that timestamps are greater than the previous

one seen, unless it is the first transaction. In the first

transaction, the server checks instead that the window verifier is

one less than the window.

struct authdes_fullname {

string name<MAXNETNAMELEN>; /* name of client */

des_block key; /* PK encrypted conversation key */

opaque window[4]; /* encrypted window */

};

A credential is either a fullname or a nickname:

union authdes_cred switch (authdes_namekind adc_namekind) {

case ADN_FULLNAME:

authdes_fullname adc_fullname;

case ADN_NICKNAME:

int adc_nickname;

};

A timestamp encodes the time since midnight, March 1, 1970.

struct timestamp {

unsigned int seconds; /* seconds */

unsigned int useconds; /* and microseconds */

};

Verifier: client variety.

The window verifier is only used in the first transaction. In

conjunction with a fullname credential, these items are packed into

the following structure before being encrypted:

struct {

adv_timestamp; -- one DES block

adc_fullname.window; -- one half DES block

adv_winverf; -- one half DES block

}

This structure is encrypted using CBC mode encryption with an input

vector of zero. All other encryptions of timestamps use ECB mode

encryption.

struct authdes_verf_clnt {

des_block adv_timestamp; /* encrypted timestamp */

opaque adv_winverf[4]; /* encrypted window verifier */

};

Verifier: server variety.

The server returns (encrypted) the same timestamp the client gave it

minus one second. It also tells the client its nickname to be used

in future transactions (unencrypted).

struct authdes_verf_svr {

des_block adv_timeverf; /* encrypted verifier */

int adv_nickname; /* new nickname for client */

};

9.3.5 Diffie-Hellman Encryption

In this scheme, there are two constants "BASE" and "MODULUS" [3].

The particular values Sun has chosen for these for the DES

authentication protocol are:

const BASE = 3;

const MODULUS = "d4a0ba0250b6fd2ec626e7efd637df76c716e22d0944b88b"

The way this scheme works is best explained by an example. Suppose

there are two people "A" and "B" who want to send encrypted messages

to each other. So, A and B both generate "secret" keys at random

which they do not reveal to anyone. Let these keys be represented as

SK(A) and SK(B). They also publish in a public Directory their

"public" keys. These keys are computed as follows:

PK(A) = ( BASE ** SK(A) ) mod MODULUS

PK(B) = ( BASE ** SK(B) ) mod MODULUS

The "**" notation is used here to represent exponentiation. Now, both

A and B can arrive at the "common" key between them, represented here

as CK(A, B), without revealing their secret keys.

A computes:

CK(A, B) = ( PK(B) ** SK(A)) mod MODULUS

while B computes:

CK(A, B) = ( PK(A) ** SK(B)) mod MODULUS

These two can be shown to be equivalent:

(PK(B) ** SK(A)) mod MODULUS = (PK(A) ** SK(B)) mod MODULUS

We drop the "mod MODULUS" parts and assume modulo arithmetic to

simplify things:

PK(B) ** SK(A) = PK(A) ** SK(B)

Then, replace PK(B) by what B computed earlier and likewise for PK(A).

((BASE ** SK(B)) ** SK(A) = (BASE ** SK(A)) ** SK(B)

which leads to:

BASE ** (SK(A) * SK(B)) = BASE ** (SK(A) * SK(B))

This common key CK(A, B) is not used to encrypt the timestamps used

in the protocol. Rather, it is used only to encrypt a conversation

key which is then used to encrypt the timestamps. The reason for

doing this is to use the common key as little as possible, for fear

that it could be broken. Breaking the conversation key is a far less

serious offense, since conversations are relatively short-lived.

The conversation key is encrypted using 56-bit DES keys, yet the

common key is 192 bits. To reduce the number of bits, 56 bits are

selected from the common key as follows. The middle-most 8-bytes are

selected from the common key, and then parity is added to the lower

order bit of each byte, producing a 56-bit key with 8 bits of parity.

10. RECORD MARKING STANDARD

When RPC messages are passed on top of a byte stream transport

protocol (like TCP), it is necessary to delimit one message from

another in order to detect and possibly recover from protocol errors.

This is called record marking (RM). Sun uses this RM/TCP/IP

transport for passing RPC messages on TCP streams. One RPC message

fits into one RM record.

A record is composed of one or more record fragments. A record

fragment is a four-byte header followed by 0 to (2**31) - 1 bytes of

fragment data. The bytes encode an unsigned binary number; as with

XDR integers, the byte order is from highest to lowest. The number

encodes two values -- a boolean which indicates whether the fragment

is the last fragment of the record (bit value 1 implies the fragment

is the last fragment) and a 31-bit unsigned binary value which is the

length in bytes of the fragment's data. The boolean value is the

highest-order bit of the header; the length is the 31 low-order bits.

(Note that this record specification is NOT in XDR standard form!)

11. THE RPC LANGUAGE

Just as there was a need to describe the XDR data-types in a formal

language, there is also need to describe the procedures that operate

on these XDR data-types in a formal language as well. The RPC

Language is an extension to the XDR language, with the addition of

"program", "procedure", and "version" declarations. The following

example is used to describe the essence of the language.

11.1 An Example Service Described in the RPC Language

Here is an example of the specification of a simple ping program.

program PING_PROG {

/*

* Latest and greatest version

*/

version PING_VERS_PINGBACK {

void

PINGPROC_NULL(void) = 0;

/*

* Ping the client, return the round-trip time

* (in microseconds). Returns -1 if the operation

* timed out.

*/

int

PINGPROC_PINGBACK(void) = 1;

} = 2;

/*

* Original version

*/

version PING_VERS_ORIG {

void

PINGPROC_NULL(void) = 0;

} = 1;

} = 1;

const PING_VERS = 2; /* latest version */

The first version described is PING_VERS_PINGBACK with two

procedures, PINGPROC_NULL and PINGPROC_PINGBACK. PINGPROC_NULL takes

no arguments and returns no results, but it is useful for computing

round-trip times from the client to the server and back again. By

convention, procedure 0 of any RPC protocol should have the same

semantics, and never require any kind of authentication. The second

procedure is used for the client to have the server do a reverse ping

operation back to the client, and it returns the amount of time (in

microseconds) that the operation used. The next version,

PING_VERS_ORIG, is the original version of the protocol and it does

not contain PINGPROC_PINGBACK procedure. It is useful for

compatibility with old client programs, and as this program matures

it may be dropped from the protocol entirely.

11.2 The RPC Language Specification

The RPC language is identical to the XDR language defined in RFC

1014, except for the added definition of a "program-def" described

below.

program-def:

"program" identifier "{"

version-def

version-def *

"}" "=" constant ";"

version-def:

"version" identifier "{"

procedure-def

procedure-def *

"}" "=" constant ";"

procedure-def:

type-specifier identifier "(" type-specifier

("," type-specifier )* ")" "=" constant ";"

11.3 Syntax Notes

(1) The following keywords are added and cannot be used as

identifiers: "program" and "version";

(2) A version name cannot occur more than once within the scope of a

program definition. Nor can a version number occur more than once

within the scope of a program definition.

(3) A procedure name cannot occur more than once within the scope of

a version definition. Nor can a procedure number occur more than once

within the scope of version definition.

(4) Program identifiers are in the same name space as constant and

type identifiers.

(5) Only unsigned constants can be assigned to programs, versions and

procedures.

APPENDIX A: PORT MAPPER PROGRAM PROTOCOL

The port mapper program maps RPC program and version numbers to

transport-specific port numbers. This program makes dynamic binding

of remote programs possible.

This is desirable because the range of reserved port numbers is very

small and the number of potential remote programs is very large. By

running only the port mapper on a reserved port, the port numbers of

other remote programs can be ascertained by querying the port mapper.

The port mapper also aids in broadcast RPC. A given RPC program will

usually have different port number bindings on different machines, so

there is no way to directly broadcast to all of these programs. The

port mapper, however, does have a fixed port number. So, to

broadcast to a given program, the client actually sends its message

to the port mapper located at the broadcast address. Each port mapper

that picks up the broadcast then calls the local service specified by

the client. When the port mapper gets the reply from the local

service, it sends the reply on back to the client.

A.1 Port Mapper Protocol Specification (in RPC Language)

const PMAP_PORT = 111; /* portmapper port number */

A mapping of (program, version, protocol) to port number:

struct mapping {

unsigned int prog;

unsigned int vers;

unsigned int prot;

unsigned int port;

};

Supported values for the "prot" field:

const IPPROTO_TCP = 6; /* protocol number for TCP/IP */

const IPPROTO_UDP = 17; /* protocol number for UDP/IP */

A list of mappings:

struct *pmaplist {

mapping map;

pmaplist next;

};

Arguments to callit:

struct call_args {

unsigned int prog;

unsigned int vers;

unsigned int proc;

opaque args<>;

};

Results of callit:

struct call_result {

unsigned int port;

opaque res<>;

};

Port mapper procedures:

program PMAP_PROG {

version PMAP_VERS {

void

PMAPPROC_NULL(void) = 0;

bool

PMAPPROC_SET(mapping) = 1;

bool

PMAPPROC_UNSET(mapping) = 2;

unsigned int

PMAPPROC_GETPORT(mapping) = 3;

pmaplist

PMAPPROC_DUMP(void) = 4;

call_result

PMAPPROC_CALLIT(call_args) = 5;

} = 2;

} = 100000;

A.2 Port Mapper Operation

The portmapper program currently supports two protocols (UDP and

TCP). The portmapper is contacted by talking to it on assigned port

number 111 (SUNRPC) on either of these protocols.

The following is a description of each of the portmapper procedures:

PMAPPROC_NULL:

This procedure does no work. By convention, procedure zero of any

protocol takes no parameters and returns no results.

PMAPPROC_SET:

When a program first becomes available on a machine, it registers

itself with the port mapper program on the same machine. The program

passes its program number "prog", version number "vers", transport

protocol number "prot", and the port "port" on which it awaits

service request. The procedure returns a boolean reply whose value

is "TRUE" if the procedure successfully established the mapping and

"FALSE" otherwise. The procedure refuses to establish a mapping if

one already exists for the tuple "(prog, vers, prot)".

PMAPPROC_UNSET:

When a program becomes unavailable, it should unregister itself with

the port mapper program on the same machine. The parameters and

results have meanings identical to those of "PMAPPROC_SET". The

protocol and port number fields of the argument are ignored.

PMAPPROC_GETPORT:

Given a program number "prog", version number "vers", and transport

protocol number "prot", this procedure returns the port number on

which the program is awaiting call requests. A port value of zeros

means the program has not been registered. The "port" field of the

argument is ignored.

PMAPPROC_DUMP:

This procedure enumerates all entries in the port mapper's database.

The procedure takes no parameters and returns a list of program,

version, protocol, and port values.

PMAPPROC_CALLIT:

This procedure allows a client to call another remote procedure on

the same machine without knowing the remote procedure's port number.

It is intended for supporting broadcasts to arbitrary remote programs

via the well-known port mapper's port. The parameters "prog",

"vers", "proc", and the bytes of "args" are the program number,

version number, procedure number, and parameters of the remote

procedure. Note:

(1) This procedure only sends a reply if the procedure was

successfully executed and is silent (no reply) otherwise.

(2) The port mapper communicates with the remote program using UDP

only.

The procedure returns the remote program's port number, and the reply

is the reply of the remote procedure.

REFERENCES

[1] Birrell, A. D. & Nelson, B. J., "Implementing Remote Procedure

Calls", XEROX CSL-83-7, October 1983.

[2] Cheriton, D., "VMTP: Versatile Message Transaction Protocol",

Preliminary Version 0.3, Stanford University, January 1987.

[3] Diffie & Hellman, "New Directions in Cryptography", IEEE

Transactions on Information Theory IT-22, November 1976.

[4] Mills, D., "Network Time Protocol", RFC-958, M/A-COM Linkabit,

September 1985.

[5] National Bureau of Standards, "Data Encryption Standard", Federal

Information Processing Standards Publication 46, January 1977.

[6] Postel, J., "Transmission Control Protocol - DARPA Internet

Program Protocol Specification", RFC-793, Information Sciences

Institute, September 1981.

[7] Postel, J., "User Datagram Protocol", RFC-768, Information

Sciences Institute, August 1980.

[8] Reynolds, J., and Postel, J., "Assigned Numbers", RFC-1010,

Information Sciences Institute, May 1987.

[9] Sun Microsystems, "XDR: External Data Representation Standard",

RFC-1014, June 1987.

 
 
 
免责声明:本文为网络用户发布,其观点仅代表作者个人观点,与本站无关,本站仅提供信息存储服务。文中陈述内容未经本站证实,其真实性、完整性、及时性本站不作任何保证或承诺,请读者仅作参考,并请自行核实相关内容。
2023年上半年GDP全球前十五强
 百态   2023-10-24
美众议院议长启动对拜登的弹劾调查
 百态   2023-09-13
上海、济南、武汉等多地出现不明坠落物
 探索   2023-09-06
印度或要将国名改为“巴拉特”
 百态   2023-09-06
男子为女友送行,买票不登机被捕
 百态   2023-08-20
手机地震预警功能怎么开?
 干货   2023-08-06
女子4年卖2套房花700多万做美容:不但没变美脸,面部还出现变形
 百态   2023-08-04
住户一楼被水淹 还冲来8头猪
 百态   2023-07-31
女子体内爬出大量瓜子状活虫
 百态   2023-07-25
地球连续35年收到神秘规律性信号,网友:不要回答!
 探索   2023-07-21
全球镓价格本周大涨27%
 探索   2023-07-09
钱都流向了那些不缺钱的人,苦都留给了能吃苦的人
 探索   2023-07-02
倩女手游刀客魅者强控制(强混乱强眩晕强睡眠)和对应控制抗性的关系
 百态   2020-08-20
美国5月9日最新疫情:美国确诊人数突破131万
 百态   2020-05-09
荷兰政府宣布将集体辞职
 干货   2020-04-30
倩女幽魂手游师徒任务情义春秋猜成语答案逍遥观:鹏程万里
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案神机营:射石饮羽
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案昆仑山:拔刀相助
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案天工阁:鬼斧神工
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案丝路古道:单枪匹马
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案镇郊荒野:与虎谋皮
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案镇郊荒野:李代桃僵
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案镇郊荒野:指鹿为马
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案金陵:小鸟依人
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案金陵:千金买邻
 干货   2019-11-12
 
推荐阅读
 
 
 
>>返回首頁<<
 
靜靜地坐在廢墟上,四周的荒凉一望無際,忽然覺得,淒涼也很美
© 2005- 王朝網路 版權所有