分享
 
 
 

RFC2880 - Internet Fax T.30 Feature Mapping

王朝other·作者佚名  2008-05-31
窄屏简体版  字體: |||超大  

Network Working Group L. McIntyre

Request for Comments: 2880 Xerox Corporation

Category: Informational G. Klyne

Content Technologies

August 2000

Internet Fax T.30 Feature Mapping

Status of this Memo

This memo provides information for the Internet community. It does

not specify an Internet standard of any kind. Distribution of this

memo is unlimited.

Copyright Notice

Copyright (C) The Internet Society (2000). All Rights Reserved.

Abstract

This document describes how to map Group 3 fax capability

identification bits, described in ITU T.30 [6], into the Internet fax

feature schema described in "Content feature schema for Internet fax"

[4].

This is a companion to the fax feature schema document [4], which

itself defines a profile of the media feature registration mechanisms

[1,2,3], for use in performing capability identification between

extended Internet fax systems [5].

Table of Contents

1. IntrodUCtion .............................................3

1.1 Organization of this document ........................3

1.2 Terminology and document conventions .................3

1.3 Discussion of this document ..........................4

2. Combining feature tags ...................................4

2.1 Relationship to Group 3 fax ..........................5

2.2 Feature set descriptions .............................5

2.3 Examples .............................................5

2.3.1 Data resource example ............................6

2.3.2 Recipient capabilities example ...................6

3. Survey of media-related T.30 capability bits .............6

3.1 DIS/DTC bit 15 (resolution) ..........................6

3.2 DIS/DTC bit 16 (MR coding) ...........................7

3.3 DIS/DTC bits 17,18 (width) ...........................7

3.4 DIS/DTC bits 19,20 (length) ..........................7

3.5 DIS/DTC bit 31 (MMR coding) ..........................7

3.6 DIS/DTC bit 36 (JBIG multi-level coding) .............8

3.7 DIS/DTC bit 37 (plane interleave) ....................8

3.8 DIS/DTC bits 41,42,43 (resolution) ...................8

3.9 DIS/DTC bits 44,45 (preferred units) .................9

3.10 DIS/DTC bit 68 (JPEG) ...............................9

3.11 DIS/DTC bit 69 (colour) .............................9

3.12 DIS/DTC bit 71 (bits/sample) .......................10

3.13 DIS/DTC bit 73 (no subsampling) ....................10

3.14 DIS/DTC bit 74 (custom illuminant) .................10

3.15 DIS/DTC bit 75 (custom gamut) ......................10

3.16 DIS/DTC bits 76,77 (paper size) ....................11

3.17 DIS/DTC bit 78 (JBIG bi-level coding) ..............11

3.18 DIS/DTC bit 79 (JBIG stripe size) ..................11

3.19 DIS/DTC bit 92,93,94 (MRC maximum functional mode) .11

3.20 DIS/DTC bit 95 (MRC stripe size) ...................12

3.21 DIS/DTC bit 97 (resolution) ........................12

3.22 DIS/DTC bit 98 (resolution) ........................12

4. Summary of T.30 capability dependencies .................12

4.1 Image coding ........................................13

4.1.1 Bi-level coding .................................13

4.1.2 Multi-level coding ..............................14

4.1.3 MRC format ......................................14

4.2 Resolution and units ................................15

4.3 Colour capabilities .................................17

4.4 Document size .......................................18

5. Mapping T.30 capabilities to fax feature schema .........18

5.1 Image coding ........................................20

5.1.1 Bi-level coding .................................20

5.1.2 Multi-level coding ..............................21

5.1.3 MRC format ......................................23

5.2 Resolution and units ................................23

5.3 Colour capabilities .................................24

5.4 Document size .......................................26

6. Examples ................................................26

6.1 Common black-and-white fax machine ..................27

6.1.1 Corresponding Internet fax capabilities .........29

6.2 Full-featured color fax machine .....................30

7. Security Considerations .................................34

8. Acknowledgements ........................................34

9. References ..............................................34

10. Authors' Addresses .....................................36

Full Copyright Statement ...................................37

1. Introduction

This document describes how to map Group 3 fax capability

identification bits, described in ITU T.30 [6], into the Internet fax

feature schema described in "Content feature schema for Internet fax"

[4].

This is a companion to the fax feature schema document [4], which

itself defines a profile of the media feature registration mechanisms

[1,2,3], for use in performing capability identification between

extended Internet fax systems [5].

1.1 Organization of this document

Section 2 introduces the mechanisms that combine feature tag

constraints to describe complex recipient capabilities.

Section 3 surveys Group 3 fax (T.30) capability bits that relate to

media handling capabilities.

Section 4 describes the dependencies between Group 3 fax (T.30)

capability bits. These are presented in a decision table format [16]

with descriptive text in place of the action bodies.

Section 5 describes a formal mechanism for converting Group 3 fax

(T.30) capability masks to fax feature schema statements. The

conversion process is driven by the decision tables introduced

previously, using fax feature schema statements and combining rules

in the action bodies.

Section 6 presents an example of a Group 3 fax (T.30) capability

mask, and uses the formal mechanism described previously to convert

that into a corresponding fax feature schema statement.

1.2 Terminology and document conventions

eifax system

is used to describe any software, device or combination

of these that conforms to the specification "Extended

Facsimile Using Internet Mail" [5].

Feature is used as defined in [15]. (See also section 2 of this

memo.)

Feature tag

is used as defined in [15]. (See also section 2.)

Feature collection

is used as defined in [2]. (See also section 2.)

Feature set

is used as defined in [2]. (See also section 2.)

1.3 Discussion of this document

Discussion of this document should take place on the Internet fax

mailing list hosted by the Internet Mail Consortium (IMC). Please

send comments regarding this document to:

ietf-fax@imc.org

To subscribe to this list, send a message with the body 'subscribe'

to "ietf-fax-request@imc.org".

To see what has gone on before you subscribed, please see the mailing

list archive at:

http://www.imc.org/ietf-fax/

2. Combining feature tags

A fax document can be described by media features. Any single media

feature value can be thought of as just one component of a feature

collection that describes some instance of a document (e.g. a

printed fax, a displayed image, etc.). Such a feature collection

consists of a number of media feature tags (each per [1]) and

associated feature values.

A feature set contains a number of feature collections. Thus, a

feature set can describe a number of different fax document

instances. These can correspond to different treatments of a single

document (e.g. different resolutions used for printing a given fax),

a number of different documents subjected to a common treatment (e.g.

the range of different images that can be rendered on a given

display), or some combination of these (see examples below).

Thus, a description of a feature set can describe the rendering

requirements of a fax document or the capabilities of a receiving

eifax system.

2.1 Relationship to Group 3 fax

A "feature tag" can be compared with a single bit in a T.30 DCS

frame, describing a specific attribute of a specific fax document.

A "feature collection" corresponds to a complete T.30 DCS frame,

describing a range of attributes of a specific fax document.

A "feature set" corresponds to a DIS or DTC frame, describing the

range of document attributes that can be accepted by a given fax

machine.

Within T.30 DIS/DTC frames, dependencies between the various

capabilities are implicit in the definitions of the capabilities.

E.g. multi-level coding (DIS/DTC bit 68) requires support for

200*200dpi resolution (DIS/DTC bit 15). In the feature set

description framework used by eifax systems [1,2,3,4] such

dependencies between different features are eXPressed explicitly.

Later sections of this memo describe how the implicit dependencies of

T.30 are expressed using the media feature set notation.

2.2 Feature set descriptions

The general approach to describing feature sets, described more fully

in [2], is to use functions ("predicates") that, when applied to a

feature collection value, yield a Boolean value that is TRUE if the

feature collection describes an acceptable fax document instance,

otherwise FALSE.

P(F)

P(F) = TRUE <- : -> P(F) = FALSE

:

+----------:----------+ This box represents some

: universe of fax documents (F)

Included : Excluded from which some acceptable subset

: is selected by the predicate P.

+----------:----------+

:

2.3 Examples

In the examples below the following notation is used:

(x ? y) tests feature tag 'x' for some relationship

with value 'y'.

( p1 p2 ... pn ) represents the logical-OR of predicates 'p1',

'p2' up to 'pn'.

(& p1 p2 ... pn ) represents the logical-AND of predicates

'p1', 'p2' up to 'pn'.

2.3.1 Data resource example

The following expression uses the syntax of [2] to describe a data

resource that can be displayed either:

(a) as a 750x500 pixel image using 15 colours, or

(b) at 150dpi on an A4 page.

( (& (pix-x=750) (pix-y=500) (color=15) )

(& (dpi>=150) (papersize=A4) ) )

2.3.2 Recipient capabilities example

The following expression describes a receiving system that has:

(a) a screen capable of displaying 640*480 pixels and 16 million

colours (24 bits per pixel), 800*600 pixels and 64 thousand

colours (16 bits per pixel) or 1024*768 pixels and 256 colours

(8 bits per pixel), or

(b) a printer capable of rendering 300dpi on A4 paper.

( (& ( (& (pix-x<=640) (pix-y<=480) (color<=16777216) )

(& (pix-x<=800) (pix-y<=600) (color<=65535) )

(& (pix-x<=1024) (pix-y<=768) (color<=256) ) )

(media=screen) )

(& (dpi=300)

(media=stationery) (papersize=A4) ) )

3. Survey of media-related T.30 capability bits

The following sections refer to T.30 DIS/DTC bits identified and

described in Table 2/T.30 and accompanying notes [6]. Bit numbers

that are not referenced below are considered to be not related to

media features, hence not relevant to the Internet fax feature

schema.

NOTE: some of the DIS/DTC bits identified below are

documented in revisions of the T.30 specification that

may be not yet publicly available from the ITU.

3.1 DIS/DTC bit 15 (resolution)

All Group 3 fax systems are required to support a basic resolution of

200*100dpi (dots per inch) or 8*3.85dpmm (dots per millimetre).

Setting this bit indicates additional support for 200*200dpi or

8*7.7dpmm.

For multi-level images, 200*200dpi is the basic resolution, and this

bit must be set. The other basic resolution options apply to bi-

level images only.

See also: bits 44,45.

3.2 DIS/DTC bit 16 (MR coding)

All Group 3 fax systems are required to support Modified Huffman (MH)

1-dimensional coding for bi-level images. (A bi-level image is one

with just two pixel states such as black and white, as opposed to a

grey-scale or colour image.)

Setting this bit indicates additional support for Modified Read (MR)

2-dimensional coding for bi-level images.

Both MH and MR coding are described in ITU T.4 [7].

See also: bits 31,78,79.

3.3 DIS/DTC bits 17,18 (width)

All Group 3 fax systems are required to support 215mm paper width.

These bits can be set to indicate additional support for 255mm and

303mm paper widths.

See also: bits 76,77.

3.4 DIS/DTC bits 19,20 (length)

All Group 3 fax systems are required to support 297mm paper length.

These bits can be set to indicate additional support for 364mm and

unlimited paper lengths.

See also: bits 76,77.

3.5 DIS/DTC bit 31 (MMR coding)

Setting this bit indicates support for Modified Modified Read (MMR)

2-dimensional coding for bi-level images, in addition to the required

support for MH coding.

MMR coding is described in ITU T.6 [8].

See also: bits 16,78,79.

3.6 DIS/DTC bit 36 (JBIG multi-level coding)

If multi-level images are to be handled, support for JPEG coding is

required (i.e. bit 68 must be set). Setting bit 36 indicates

additional support for JBIG lossless coding of multi-level images.

JBIG coding for multi-level images is described in ITU T.43 [10] and

T.4 Annex G [7].

See also: bits 68,69.

3.7 DIS/DTC bit 37 (plane interleave)

Setting this bit indicates support for plane interleave for JBIG-

coded multi-level images in addition to stripe interleave, which is

standard for JBIG multi-level images.

JBIG coding for multi-level images is described in ITU T.43 [10] and

T.4 Annex G [7].

See also: bit 36.

3.8 DIS/DTC bits 41,42,43 (resolution)

Setting these bits indicates support for resolutions in addition to

200*100dpi and 200*200dpi, or 8*3.85dpmm and 8*7.7dpmm. (Or in

addition to the basic 200*200dpi resolution when using a multi-level

image mode.)

Bit 41 indicates support for 8*15.4dpmm bi-level images

(independently of the settings of bits 44 and 45).

Bit 42 indicates support for 300*300dpi bi-level images

(independently of the settings of bits 44 and 45). Also applies to

multi-level images or MRC mask if bit 97 is set.

Bit 43 indicates support for 400*400dpi and/or 16*15.4dpmm bi-level

images, depending upon the settings of bits 44 and 45. Also applies

to multi-level images or MRC mask if bit 97 is set.

See also: bits 15,44,45,97.

3.9 DIS/DTC bits 44,45 (preferred units)

These bits are used to indicate the preferred resolution units for

received images. Because the exact resolution and x/y pixel density

measures in dpi or dpmm are slightly different, some image size and

ASPect ratio distortion may occur if the sender and receiver use

different units.

Even when sender and recipient have different preferred units, image

transfer must be accomplished. For most fax uses, the dpi and dpmm

measurements are sufficiently close to each other that the difference

is not noticed.

The preferred units setting affects the detailed interpretation of

the following resolutions:

dpi dpmm (dpi equivalent)

--- ----

Base 200*100 8*3.85 204*98

Bit 15 200*200 8*7.7 204*196

Bit 43 400*400 16*15.4 408*391

But terminals are required to accept the inch- and metric-based

measures given above as equivalent, distorting the image if necessary

to accommodate the differences.

See also: bits 15, 43

3.10 DIS/DTC bit 68 (JPEG)

This bit indicates support for JPEG coding of multi-level images.

JPEG coding for multi-level images is described in ITU T.81 [12] and

T.4 Annex E [7].

See also: bits 15,69,73

3.11 DIS/DTC bit 69 (colour)

This bit indicates support for colour images, in addition to just

grey-scale.

Both grey-scale and colour require multi-level coding. The

difference is that grey is single component while colour is multi-

component.

See also: bits 36,68,73.

3.12 DIS/DTC bit 71 (bits/sample)

Standard support for multi-level images uses 8 bits per sample.

Setting this bit indicates additional support for 12 bits per sample.

For a grey-scale multi-level image, there is just one sample per

pixel, giving 256 or 4096 possible pixel values. For a full colour

multi-level image there are three samples per pixel, giving 256^3

(16777216) or 4096^3 (6871946736) possible values.

When related to a mapped colour image, bit 71 also affects the

maximum number of entries in the mapping table: when it is reset, up

to 4096 different pixel values can be used; when set, up to 65536

different values can be used.

See also: bit 68.

3.13 DIS/DTC bit 73 (no subsampling)

Standard support for JPEG-coded multi-level images uses 4:1:1

chrominance subsampling. That is, for each 4 luminance samples in

the image data there is a single chrominance sample.

Setting this bit indicates that JPEG-coded colour images without

subsampling can also be supported. This is not applicable to JBIG

coding (bit 36).

See also: bits 68,69.

3.14 DIS/DTC bit 74 (custom illuminant)

Standard support for multi-level images requires use of D50

illuminant. Setting this bit indicates that a custom illuminant also

can be supported for multi-level images (both grey-scale and colour).

Details of the custom illuminant are contained in the image data.

Use of a custom illuminant with multi-level images is described in

ITU T.4 Annex E [7].

See also: bits 36,68.

3.15 DIS/DTC bit 75 (custom gamut)

Standard support for a default colour gamut is required for multi-

level images. Setting this bit indicates that a custom gamut also

can be supported for multi-level images (both grey-scale and colour).

Details of the custom gamut are contained in the image data.

The default gamut (L*=[0,100], a*=[-85, 85], b* = [-75, 125]), and

use of a custom gamut with multi-level images is described in ITU

T.42 [9] and T.4 Annex E [7].

See also: bits 36,68.

3.16 DIS/DTC bits 76,77 (paper size)

All Group 3 faxes are required to support A4 paper size. These bits

can be set to indicate additional support for North American letter

and legal paper sizes.

See also: bits 17,18,19,20.

3.17 DIS/DTC bit 78 (JBIG bi-level coding)

Setting bit 78 indicates support for JBIG coding of bi-level images

(using T.85 encoding rules), in addition to the required support for

MH coding.

JBIG coding of bi-level images is described in ITU T.85 [14].

See also: bits 16,31,79.

3.18 DIS/DTC bit 79 (JBIG stripe size)

Setting bit 79 (along with bit 78) indicates support for the 'LO'

option with JBIG coded bi-level images. Basic bi-level JBIG coding

uses 128 lines per stripe; the 'LO' option allows other stripe sizes

to be used.

The stripe size is used for all stripes except the last, which may

have fewer lines than the indicated value.

JBIG coding of bi-level images is described in ITU T.85 [14].

See also: bits 16,31,78.

3.19 DIS/DTC bit 92,93,94 (MRC maximum functional mode)

If these bits are all zero, then Mixed Raster Content (MRC) coding is

not supported. Otherwise, they represent a number in the range 1-7

that indicates an MRC maximum functional mode.

MRC coding of images is described in ITU T.44 [11] and T.4 Annex H

[17].

See also: bits 68,95.

3.20 DIS/DTC bit 95 (MRC stripe size)

Standard support for MRC uses a maximum stripe size of 256 lines.

When this bit is set, the maximum stripe size is a full page.

This bit is meaningful only if bits 92-94 indicate an MRC coding

capability. MRC coding of images is described in ITU T.44 [11] and

T.4 Annex H [17].

See also: bits 92,93,94.

3.21 DIS/DTC bit 97 (resolution)

Setting this bit indicates that the additional resolutions indicated

by bits 42 and 43 may be used for multi-level images and any MRC mask

layer.

When this bit is set, bit 42 implies 300dpi and bit 43 implies 400dpi

for multi-level or MRC mask layer images (irrespective of the

preferred units indicated by bits 44 and 45).

See also: bits 42,43,68.

3.22 DIS/DTC bit 98 (resolution)

Setting this bit indicates that the additional resolution 100*100dpi

may be used for multi-level images.

NOTE: 100dpi is not used for bi-level images, including

the MRC mask layer.

See also: bit 36,68,92-94.

4. Summary of T.30 capability dependencies

This section contains a number of decision tables that indicate the

allowable combinations of T.30 DIS/DTC mask bits.

Within the decision table bodies, the following symbols are use to

indicate values of T.30 DIS/DTC bits:

0 = bit set to '0'

1 = bit set to '1'

x = don't care bit value: may be '0' or '1'

*0 = bit must be '0' ('1' is invalid in given combination)

*1 = bit must be '1' ('0' is invalid in given combination)

# = bits in row combined to form a numeric value

4.1 Image coding

MH coding is required as a minimum for Group 3 fax operation.

4.1.1 Bi-level coding

<------- T.30 bits --------->

15163136376869737879Description

--+--+--+--+--+--+--+--+--+--++---------------------------------------

x 0 0 0 0Compression = [MH]

x 1 0 0 0Compression = [MH,MR]

x 0 1 0 0Compression = [MH,MMR]

x 1 1 0 0Compression = [MH,MR,MMR]

x 0 0 1 0Compression = [MH,T.85]

x 1 0 1 0Compression = [MH,MR,T.85]

x 0 1 1 0Compression = [MH,MMR,T.85]

x 1 1 1 0Compression = [MH,MR,MMR,T.85]

x 0 0 *1 1Compression = [MH,T.85,T.85LO]

x 1 0 *1 1Compression = [MH,MR,T.85,T.85LO]

x 0 1 *1 1Compression = [MH,MMR,T.85,T.85LO]

x 1 1 *1 1Compression = [MH,MR,MMR,T.85,T.85LO]

MH = 1-D per T.4

MR = 2-D per T.4

MMR = 2-D per T.6

T.85 = Basic JBIG per T.85

T.85LO = Optional LO with T.85/JBIG

(Basic JBIG is 128 lines/stripe; LO

allows other stripe sizes to be used)

--+--+--+--+--+--+--+--+--+--++---------------------------------------

4.1.2 Multi-level coding

Note: When 37, 69, 73, 79 and 95 are set to "1", the feature

represented by "0" is also available. Example: If plane interleave

is available then stripe interleave is also available.

<------- T.30 bits --------->

15163136376869737879Description

--+--+--+--+--+--+--+--+--+--++---------------------------------------

x *0 x 0 x x No grey or colour (no T.43 or JPEG)

*1 0 x 1 0 x JPEG, grey scale only

*1 0 x 1 1 0 JPEG, full colour, subsampling

*1 0 x 1 1 1 JPEG, full colour, no subsampling

*1 1 0*1 0 x T.43, JPEG, grey only, stripe i/l

*1 1 1*1 0 x T.43, JPEG, grey only, plane i/l

*1 1 0*1 1 0 T.43, JPEG, colour, stripe i/l, s/s

*1 1 0*1 1 1 T.43, JPEG, colour, stripe i/l, no s/s

*1 1 1*1 1 0 T.43, JPEG, colour, plane i/l, s/s

*1 1 1*1 1 1 T.43, JPEG, colour, plane i/l, no s/s

's/s' is 4:1:1 L*:a*:b* subsampling

'No s/s' is 1:1:1 L*:a*:b* subsampling

'stripe i/l' is stripe interleave

'plane i/l' is full-plane interleave

--+--+--+--+--+--+--+--+--+--++---------------------------------------

4.1.3 MRC format

Multi-level coders, as indicated above, are used for foreground and

background images within an MRC-format document. Bi-level codes

are used for the mask layer.

<---- T.30 bits ------>

1592939495 Description

--+--+--+--+--+--+--+--++---------------------------------------

x 0 0 0 x MRC not accepted

*1 # # # 0 MRC level, max strip 256 lines

*1 # # # 1 MRC level, max strip full page

### is MRC performance level (1-7, per T.44)

--+--+--+--+--+--+--+--++---------------------------------------

4.2 Resolution and units

Support for bi-level coding at least one of 200*100dpi or 8*3.85dpmm

is required in all cases for Group 3 fax conformance. For multi-

level coders (colour/grey) and MRC mask layers the base resolution is

200*200dpi (i.e. bit 15 must be set).

When multi-level coders (JPEG or T.43) or MRC are used, only inch-

based square resolutions are available. However, the base non-square

resolution (i.e. 200x100dpi or 8x3.85dpmm) must still be available as

a capability for use with the mandatory bi-level coder (MH). Hence,

any references to metric and non-square resolutions in the table

below apply only to bi-level coders.

When describing MRC capabilities, the complete set of usable

resolutions is listed. However, there are some restrictions on their

use: (a) 100dpi resolution can be used only with multi-level images,

and (b) any multi-level image resolution is required to be an

integral sub-multiple of the applicable mask resolution.

In the following table:

dpi = dots per inch

dpmm = dots per millimetre

Preferred resolutions are indicated here, even though inch- or mm-

based units must be accepted, according to the T.30 protocol [6].

<------- T.30 bits ------>

154142434445689798Description

--+--+--+--+--+--+--+--+--++-----------------------------------------

0 0 x x Resolution = base only

1 0 0 0 Invalid

1 0 0 1 Resolution = 8*3.85dpmm or 8*7.7dpmm

1 0 1 0 Resolution = 200*100dpi or 200*200dpi

1 0 1 1 Resolution = 8*3.85dpmm or 8*7.7dpmm

or 200*100dpi or 200*200dpi

0 1 0 0 Invalid

0 1 0 1 Resolution = 8*3.85dpmm or 16*15.4dpmm

0 1 1 0 Resolution = 200*100dpi or 400*400dpi

0 1 1 1 Resolution = 8*3.85dpmm or 16*15.4dpmm

or 200*100dpi or 400*400dpi

1 1 0 0 Invalid

1 1 0 1 Resolution = 8*3.85dpmm or 8*7.7dpmm

or 16*15.4dpmm

1 1 1 0 Resolution = 200*100dpi or 200*200dpi

or 400*400dpi

1 1 1 1 Resolution = 8*7.7dpmm or 8*7.7dpmm

or 16*15.4dpmm

or 200*100dpi or 200*200dpi

or 400*400dpi

--+--+--+--+--+--+--+--+--++-----------------------------------------

0 Resolutions as above

1 Also supports 8*15.4dpmm (bi-level only)

Independent of bits 44,45

--+--+--+--+--+--+--+--+--++-----------------------------------------

0 Resolutions as above

1 Also supports 300*300dpi

Independent of bits 44,45

--+--+--+--+--+--+--+--+--++-----------------------------------------

x 0 Resolutions as above

*1 1 Also 300*300dpi or 400*400dpi (see below)

(Applies colour, grey-scale or MRC mask)

(Valid only when bit 42 or 43 is set.)

(42 => 300dpi, 43=>400dpi)

--+--+--+--+--+--+--+--+--++-----------------------------------------

x 0Resolutions as above

*1 1Also 100*100dpi

(Applies colour or grey-scale only)

(Independent of bits 44,45)

--+--+--+--+--+--+--+--+--++-----------------------------------------

4.3 Colour capabilities

Bit 68 (JPEG) is required for any colour/grey scale mode, and bit 36

indicates additional T.43 capability.

<------- T.30 bits --->

366869717475 Description

--+--+--+--+--+--+--+--++-----------------------------------------

0 0 x No grey scale or colour

x 1 0 Grey scale only

0 1 1 Full colour capability (CIE L*a*b*)

1*1 1 Full and limited colour capability:

(CIE L*a*b*, palette, RGB 1 bit/colour

and CMY(K)1 bit/colour)

--+--+--+--+--+--+--+--++-----------------------------------------

0 x

1 0 8 bits/pixel and up to 4096 palette entries

1 1 8 or 12 bits/pixel, 65536 palette entries

--+--+--+--+--+--+--+--++-----------------------------------------

0 x

1 0 CIE standard illuminant D50 (per T.42)

1 1 Custom illuminants (definition provided)

--+--+--+--+--+--+--+--++-----------------------------------------

0 x

1 0 Default gamut (per T.42)

1 1 Custom gamuts (definition provided)

--+--+--+--+--+--+--+--++-----------------------------------------

4.4 Document size

A4 width (215mm) is required as a minimum for Group 3 fax

conformance. A Group 3 fax machine must always be able to receive

an A4 image.

<---- T.30 bits ------>

171819207677 Description

--+--+--+--+--+--+--+--++-----------------------------------------

0 0 Width = 215mm

1 0 Width = 215mm or 255mm

0 1 Width = 215mm, 255mm or 303mm

1 1 Invalid - interpret as (17=0,18=1)

(measurements described as scan line length)

(corresp. inch measurements: T.4 sect 2.2)

--+--+--+--+--+--+--+--++-----------------------------------------

0 0 Length = 297mm (A4)

1 0 Length = 297mm (A4) or 364mm (B4)

0 1 Length = unlimited

1 1 Invalid

--+--+--+--+--+--+--+--++-----------------------------------------

0 0 Papersize = A4

1 0 Papersize = A4 or NA-Letter

0 1 Papersize = A4 or NA-Legal

1 1 Papersize = A4 or NA-Letter or NA-Legal

(These in addition to paper sizes implied

by bits 17-20 above)

--+--+--+--+--+--+--+--++-----------------------------------------

5. Mapping T.30 capabilities to fax feature schema

This section follows the structure of the previous section, except

that the decision tables are restated with feature set expression

mappings in the action stub. The feature set expressions use media

feature tags presented in "Content feature schema for Internet fax"

[4].

To construct a feature set expression corresponding to a collection

of DIS frame bits:

o Compare the DIS bits with each decision table in the following

sections (5.1 to 5.4). Some decision tables consist of a number

of sub-tables separated by horizontal lines.

o The DIS bits will match exactly one row from each table or sub-

table: collect the corresponding feature set expression from the

action stub (the right hand column of the table).

o In the case of the table in section 5.2, which consists of

several sub-tables, combine the feature set expressions from each

sub-table with a logical-OR: ( s1 s2 ... sn ), where 's1', 's2'

etc. are the feature set expressions selected from each sub-

table. In this way, a single feature set expression is oBTained

for the table.

o In the case of the tables in sections 5.3 and 5.4, combine the

sub-table expressions with a logical-AND: (& s1 s2 ... sn ).

o Combine the feature set expressions for each table as follows:

(& ( T511 T512 ) T513 T52 T53 T54 )

where:

- T511 is the feature set expression obtained from the table in

section 5.1.1

- T512 is obtained from the table in section 5.1.2

- T513 is obtained from the table in section 5.1.3

- T52 is obtained from the table in section 5.2

- T53 is obtained from the table in section 5.3

- T54 is obtained from the table in section 5.4

The resulting expression is the feature set expression corresponding

to the DIS bits given. Remember that there may be other capabilities

not expressed by the DIS bits that should be incorporated into the

final feature expression (e.g. TIFF image file structure).

To do the reverse transformation, match the feature set to each row

of each decision table using the matching algorithm in RFC2533 [2],

and OR together the DIS bit masks for each row whose feature set

expression is completely contained by (i.e. is a subset of) that

given (where the bit value in a table is 'x', use '0').

A feature set A is completely contained by B if the feature set match

of A and B (obtained by applying the feature set matching algorithm

in [2]) is equal to A.

5.1 Image coding

5.1.1 Bi-level coding

<------- T.30 bits --------->

15163136376869737879Feature set expression

--+--+--+--+--+--+--+--+--+--++---------------------------------------

x 0 0 0 0(& (color=binary)

(image-coding=[MH]) )

x 1 0 0 0(& (color=binary)

(image-coding=[MH,MR])

x 0 1 0 0(& (color=binary)

(image-coding=[MH,MMR])

x 1 1 0 0(& (color=binary)

(image-coding=[MH,MR,MMR])

x 0 0 1 0(& (color=binary)

(image-coding=[MH,JBIG])

(image-coding-constraint=JBIG-T85)

(JBIG-stripe-size=128) )

x 1 0 1 0(& (color=binary)

(image-coding=[MH,MR,JBIG])

(image-coding-constraint=JBIG-T85)

(JBIG-stripe-size=128) )

x 0 1 1 0(& (color=binary)

(image-coding=[MH,MMR,JBIG])

(image-coding-constraint=JBIG-T85)

(JBIG-stripe-size=128) )

x 1 1 1 0(& (color=binary)

(image-coding=[MH,MR,MMR,JBIG])

(image-coding-constraint=JBIG-T85)

(JBIG-stripe-size=128) )

x 0 0 *1 1(& (color=binary)

(image-coding=[MH,JBIG])

(image-coding-constraint=JBIG-T85)

(JBIG-stripe-size>=0) )

x 1 0 *1 1(& (color=binary)

(image-coding=[MH,MR,JBIG])

(image-coding-constraint=JBIG-T85)

(JBIG-stripe-size>=0) )

x 0 1 *1 1(& (color=binary)

(image-coding=[MH,MMR,JBIG])

(image-coding-constraint=JBIG-T85)

(JBIG-stripe-size>=0) )

x 1 1 *1 1(& (color=binary)

(image-coding=[MH,MR,MMR,JBIG])

(image-coding-constraint=JBIG-T85)

(JBIG-stripe-size>=0) )

--+--+--+--+--+--+--+--+--+--++---------------------------------------

5.1.2 Multi-level coding

<------- T.30 bits --------->

15163136376869737879Feature set expression

--+--+--+--+--+--+--+--+--+--++---------------------------------------

x *0 x 0 x x

*1 0 x 1 0 x (& (color=grey)

(image-coding=JPEG)

(image-coding-constraint=JPEG-T4E) )

*1 0 x 1 1 0 (& (color=[grey,full])

(image-coding=JPEG)

(image-coding-constraint=JPEG-T4E)

(& (color=full)

(color-subsampling="4:1:1") ) )

*1 0 x 1 1 1 (& (color=[grey,full])

(image-coding=JPEG)

(image-coding-constraint=JPEG-T4E)

(& (color=full)

(color-subsampling=

["1:1:1","4:1:1"]) ) )

*1 1 0*1 0 x (& (color=grey)

(image-coding=[JPEG,JBIG])

(image-coding-constraint=

[JPEG-T4E,JBIG-T43])

(image-interleave=stripe) )

*1 1 1*1 0 x (& (color=grey)

(image-coding=[JPEG,JBIG])

(image-coding-constraint=

[JPEG-T4E,JBIG-T43])

(image-interleave=[stripe,plane]) )

*1 1 0*1 1 0 (& (color=[limited,mapped,grey,full])

(image-coding=[JPEG,JBIG])

(image-coding-constraint=

[JPEG-T4E,JBIG-T43])

(& (color=full)

(color-subsampling="4:1:1"]) )

(image-interleave=stripe) )

*1 1 0*1 1 1 (& (color=[limited,mapped,grey,full])

(image-coding=[JPEG,JBIG])

(image-coding-constraint=

[JPEG-T4E,JBIG-T43])

(& (color=full)

(color-subsampling=

["1:1:1","4:1:1"]) )

(image-interleave=stripe) )

*1 1 1*1 1 0 (& (color=[limited,mapped,grey,full])

(image-coding=[JPEG,JBIG])

(image-coding-constraint=

[JPEG-T4E,JBIG-T43])

(& (color=full)

(color-subsampling="4:1:1"]) )

(image-interleave=[stripe,plane]) )

*1 1 1*1 1 1 (& (color=[limited,mapped,grey,full])

(image-coding=[JPEG,JBIG])

(image-coding-constraint=

[JPEG-T4E,JBIG-T43])

(& (color=full)

(image-coding=JPEG)

(color-subsampling=

["1:1:1","4:1:1"]) )

(image-interleave=[stripe,plane]) )

--+--+--+--+--+--+--+--+--+--++---------------------------------------

15163136376869737879

--+--+--+--+--+--+--+--+--+--++---------------------------------------

5.1.3 MRC format

<---- T.30 bits ------>

1592939495 Feature set expression

--+--+--+--+--+--+--+--++---------------------------------------

x 0 0 0 x (MRC-mode=0)

*1 # # # 0 (& (MRC-mode<=###)

(MRC-max-stripe-size=[0..256]) )

*1 # # # 1 (& (MRC-mode<=###)

(MRC-max-stripe-size>=0) )

--+--+--+--+--+--+--+--++---------------------------------------

5.2 Resolution and units

<------- T.30 bits ------>

154142434445689798Feature set expression

--+--+--+--+--+--+--+--+--++-----------------------------------------

0 0 (& (color=binary)

( (& (dpi=200) (dpi-xyratio=200/100) )

(& (dpi=204)

(dpi-xyratio=204/98) ) ) )

1 0 ( (& (color=binary)

( (& (dpi=204)

(dpi-xyratio=204/98) )

(& (dpi=204)

(dpi-xyratio=204/196) )

(& (dpi=200)

(dpi-xyratio=200/100) ) ) )

(& (dpi=200) (dpi-xyratio=1) ) )

0 1 ( (& (color=binary)

( (& (dpi=204)

(dpi-xyratio=204/98) )

(& (dpi=408)

(dpi-xyratio=408/391) )

(& (dpi=200)

(dpi-xyratio=200/100) ) ) )

(& (dpi=400) (dpi-xyratio=1) ) )

1 1 ( (& (color=binary)

( (& (dpi=204)

(dpi-xyratio=204/98) )

(& (dpi=204)

(dpi-xyratio=204/196) )

(& (dpi=408)

(dpi-xyratio=408/391) )

(& (dpi=200)

(dpi-xyratio=200/100) ) ) )

(& (dpi=200) (dpi-xyratio=1) )

(& (dpi=400) (dpi-xyratio=1) ) )

--+--+--+--+--+--+--+--+--++-----------------------------------------

0

1 (& (color=binary)

(dpi=204)

(dpi-xyratio=204/391) )

--+--+--+--+--+--+--+--+--++-----------------------------------------

0

1 (& (dpi=300) (dpi-xyratio=1) )

--+--+--+--+--+--+--+--+--++-----------------------------------------

x x x 0

x 1 *1 1 (& (dpi=400) (dpi-xyratio=1) )

*1 0 *1 1

--+--+--+--+--+--+--+--+--++-----------------------------------------

x 0

*1 1( (color=binary)

(& (color=[limited,mapped,grey,full])

(dpi=100) (dpi-xyratio=1) ) )

--+--+--+--+--+--+--+--+--++-----------------------------------------

154142434445689798

--+--+--+--+--+--+--+--+--++-----------------------------------------

Note: all numbers in media feature expressions are integer or

rational values; hence the rational number format (n/m) used here.

Also note: the preferred unit bits (44,45) are not tested here, as a

Group 3 fax machine must accept and process either form of units for

binary images. All resolutions are expressed in dpi; here are the

metric unit equivalents:

204 ~= (1728/215)*25.4 ~= 8.04dpmm expressed in dpi

408 ~= (3456/215)*25.4 ~= 16.08dpmm expressed in dpi

98 ~= 3.85*25.4 ~= 3.85dpmm expressed in dpi

196 ~= 7.70*25.4 ~= 7.70dpmm expressed in dpi

391 ~= 15.40*25.4 ~= 15.40dpmm expressed in dpi

5.3 Colour capabilities

<------- T.30 bits --->

366869717475 Feature set expression

--+--+--+--+--+--+--+--++-----------------------------------------

0 0 x

x 1 0 ( (color=binary)

(& (color=grey)

(color-space=CIELAB) ) )

0 1 1 ( (color=binary)

(& (color=[grey,full])

(color-space=CIELAB) ) )

1*1 1 ( (color=binary)

(& (color=limited)

(color-space=[Device-RGB,Device-CMY])

(color-levels<=8) )

(& (color=limited)

(color-space=Device-CMYK)

(color-levels<=16) )

(& (color=[mapped,grey,full])

(color-space=CIELAB) ) )

--+--+--+--+--+--+--+--++-----------------------------------------

0 x

1 0 ( (color=[binary,limited])

(& (color=mapped)

(color-levels<=4096) )

(& (color=grey)

(color-levels<=256) )

(& (color=full)

(color-levels<=16777216) ) )

1 1 ( (color=[binary,limited])

(& (color=mapped)

(color-levels<=65536) )

(& (color=grey)

(color-levels<=4096) )

(& (color=full)

(color-levels<=68719476736) ) )

--+--+--+--+--+--+--+--++-----------------------------------------

0 x

1 0 ( (color=[binary,limited])

(& (color=[mapped,grey,full])

(color-illuminant=D50) ) )

1 1 -- Any color illuminant: D50 or custom

-- See note below

--+--+--+--+--+--+--+--++-----------------------------------------

0 x

1 0 ( (color=[binary,limited])

(& (color=grey)

(CIELAB-L-min>=0)

(CIELAB-L-max<=100) )

(& (color=[mapped,full])

(CIELAB-L-min>=0)

(CIELAB-L-max<=100)

(CIELAB-a-min>=-85)

(CIELAB-a-max<=85)

(CIELAB-b-min>=-75)

(CIELAB-b-max<=125) ) )

1 1 -- Any color gamut: default or custom

--+--+--+--+--+--+--+--++-----------------------------------------

366869717475 Feature set expression

--+--+--+--+--+--+--+--++-----------------------------------------

NOTE: the above table assumes the registration of a feature tag

for color illuminant, values of which are tokens that are the same

as those described by ITU T.4 [7], Annex E, section E.6.7.

5.4 Document size

A4 width (215mm) is required as a minimum for Group 3 fax

conformance. A Group 3 fax machine must always be able to receive an

A4 image.

<---- T.30 bits ------>

171819207677 Feature set expression

--+--+--+--+--+--+--+--++-----------------------------------------

0 0 (Size-x <= 2150/254)

1 0 (Size-x <= 2550/254)

x 1 (Size-x <= 3030/254)

--+--+--+--+--+--+--+--++-----------------------------------------

0 0 (Size-y <= 2970/254)

1 0 (Size-y <= 3640/254)

0 1 -- unlimited

1 1 -- invalid

--+--+--+--+--+--+--+--++-----------------------------------------

0 0 (Paper-size=A4)

1 0 (Paper-size=[A4,Letter])

0 1 (Paper-size=[A4,Legal])

1 1 (Paper-size=[A4,Letter,Legal])

--+--+--+--+--+--+--+--++-----------------------------------------

6. Examples

NOTE: Although motivated by the requirements of eifax [5], this

document is concerned with describing capabilities of Group 3 fax

systems [6]. As such, the algorithms do not of themselves create

equivalent Internet fax capability statements but, rather, they

construct capability expressions that might be incorporated into

those for eifax systems.

This point is illustrated at the end of the first example below where

subsection 6.1.1 has been added, which combines T.30 capabilities

with an appropriate TIFF file format capability to yield an

expression that might be used to describe an Internet fax system.

6.1 Common black-and-white fax machine

DIS/DTC

Bit No. DIS/DTC bit description Value

------- ----------------------- -----

15 R8 x 7.7 lines/mm and/or 1

200 x 200 pels/25.4 mm

16 Two dimensional coding capability 1

17,18 Recording width capabilities: 0,0

Scan line length 215 mm + 1%

19,20 Recording length capability: 01

unlimited

31 T.6 (MMR) coding capability 1

36 T.43 (JBIG) coding capability 0

37 Plane interleave 0

41 Resolution: 8x15.4 dpmm 0

42 Resolution: 300x300 dpi 1

43 Resolution: 16x15.4 dpmm and/or 400x400 0

dpi

68 JPEG coding: not supported 0

69 Full color mode: not supported 0

71 12 bits/pel component: not supported 0

73 No subsampling (1:1:1): not supported 0

74 Custom illuminant: not supported 0

75 Custom gamut range: not supported 0

76 North American Letter paper size 1

(8.5"x11") capability

77 North American Legal paper size 0

(8.5"x14") capability: not supported

78 Single-progression sequential coding 0

(T.85, bi-level JBIG) basic capability:

not supported

79 Single-progression sequential coding 0

(T.85, bi-level JBIG) optional L0

capability for other than 128

lines/stripe: not supported

92,93,94 T.44 (Mixed Raster Content) mode: 0,0,0

not supported

95 Page length maximum stripe size for MRC 0

coding: not supported.

97 Multi-level resolution 300x300dpi or 0

400x400dpi: not supported

98 Multi-level resolution 100x100dpi: 0

not supported

Following the procedure in section 5, matching these DIS bits

against the decision tables in sections 5.1 to 5.4, we get:

5.1.1 [Bits 16,31,78,79 = 1,1,0,0]

(& (color=binary) (image-coding=[MH,MR,MMR]) )

5.1.2 [Bits 15,36,37,68,69,73 = 1,0,0,0,0,0]

-- no capabilities

5.1.3 [Bits 15,92,93,94,95 = 1,0,0,0,0]

(MRC-mode=0)

5.2 [Bits 15,43 = 1,0]

( (& (color=binary)

( (& (dpi=204)

(dpi-xyratio=204/98) )

(& (dpi=204)

(dpi-xyratio=204/196) )

(& (dpi=200)

(dpi-xyratio=200/100) ) ) )

(& (dpi=200) (dpi-xyratio=1) ) )

[Bit 41 = 0]

-- no capabilities

[Bit 42 = 1]

(& (dpi=300) (dpi-xyratio=1) )

[Bits 42,43,68,97 = 0,0,0,0]

-- no capabilities

[Bits 68,98 = 0,0]

-- no capabilities

5.3 [Bits 36,68,69 = 0,0,0]

-- no capabilities

[Bits 68,71 = 0,0]

-- no capabilities

[Bits 68,74 = 0,0]

-- no capabilities

[Bits 68,75 = 0,0]

-- no capabilities

5.4 [Bits 17,18 = 0,0]

(size-x<=2150/254)

[Bits 19,20 = 0,1]

-- no capability constraint

[Bits 76,77 = 1,0]

(Paper-size=[A4,Letter])

Combining these as indicated in section 5, we get the following.

(The initial expression is constructed verbatim per the rules in the

first part of section 5, even though it contains some redundancy.)

(& ( (& (color=binary) (image-coding=[MH,MR,MMR]) ) )

(MRC-mode=0)

( ( (& (color=binary)

( (& (dpi=204) (dpi-xyratio=204/98) )

(& (dpi=204) (dpi-xyratio=204/196) )

(& (dpi=200) (dpi-xyratio=200/100) ) ) )

(& (dpi=200) (dpi-xyratio=1) ) )

(& (dpi=300) (dpi-xyratio=1) ) )

(& (size-x<=2150/254)

(Paper-size=[A4,Letter]) ) )

This in turn is simplified as follows. Note that the expression '(&

( (& A B ) ) C ... )' simplifies to just '(& A B C ... )'.

(& (color=binary)

(image-coding=[MH,MR,MMR])

(MRC-mode=0)

( (& (dpi=204) (dpi-xyratio=204/98) )

(& (dpi=204) (dpi-xyratio=204/196) )

(& (dpi=200) (dpi-xyratio=200/100) )

(& (dpi=200) (dpi-xyratio=1) )

(& (dpi=300) (dpi-xyratio=1) ) )

(size-x<=2150/254)

(Paper-size=[A4,Letter]) )

6.1.1 Corresponding Internet fax capabilities

In the case of an Internet fax device, additional capabilities not

described by the T.30 DIS frame should be included; e.g. the

supported TIFF file structure:

(& (color=binary)

(image-file-structure=[TIFF-Limited,TIFF-Minimal])

(image-coding=[MH,MR,MMR])

(MRC-mode=0)

( (& (dpi=204) (dpi-xyratio=204/98) )

(& (dpi=204) (dpi-xyratio=205/196) )

(& (dpi=200) (dpi-xyratio=200/100) )

(& (dpi=200) (dpi-xyratio=1) )

(& (dpi=300) (dpi-xyratio=1) ) )

(size-x<=2150/254)

(Paper-size=[A4,Letter]) )

6.2 Full-featured color fax machine

DIS/DTC

Bit No. DIS/DTC bit description Value

------- ----------------------- -----

15 R8 x 7.7 lines/mm and/or 1

200 x 200 pels/25.4 mm

16 Two dimensional coding capability 1

17,18 Recording width capabilities: 0,0

Scan line length 215 mm + 1%

19,20 Recording length capability: 01

unlimited

31 T.6 (MMR) coding capability 1

36 T.43 (JBIG) coding capability 0

37 Plane interleave 0

41 Resolution: 8x15.4 dpmm 1

42 Resolution: 300x300 dpi 0

43 Resolution: 16x15.4 dpmm and/or 400x400 1

dpi

68 JPEG coding: supported 1

69 Full color mode: supported 1

71 12 bits/pel component: not supported 0

73 No subsampling (1:1:1): supported 1

74 Custom illuminant: not supported 0

75 Custom gamut range: not supported 0

76 North American Letter paper size 1

(8.5"x11") capability

77 North American Legal paper size 0

(8.5"x14") capability: not supported

78 Single-progression sequential coding 0

(T.85, bi-level JBIG) basic capability:

not supported

79 Single-progression sequential coding 0

(T.85, bi-level JBIG) optional L0

capability for other than 128

lines/stripe: not supported

92,93,94 T.44 (Mixed Raster Content) mode: 0,0,1

mode 1 supported

95 Page length maximum stripe size for MRC 1

coding.

97 Multi-level resolution 300x300dpi or 1

400x400dpi: supported

98 Multi-level resolution 100x100dpi: 1

supported

Matching these DIS bits against the decision tables in sections 5.1

to 5.4, we get:

5.1.1 [Bits 16,31,78,79 = 1,1,0,0]

(& (color=binary) (image-coding=[MH,MR,MMR]) )

5.1.2 [Bits 15,36,37,68,69,73 = 1,0,0,1,1,1]

(& (color=[grey,full])

(image-coding=JPEG)

(image-coding-constraint=JPEG-T4E)

(& (color=full)

(image-coding=JPEG)

(color-subsampling=["1:1:1","4:1:1"]) ) )

5.1.3 [Bits 15,92,93,94,95 = 1,0,0,1,1]

(& (MRC-mode<=1) (MRC-max-stripe-size>=0) )

5.2 [Bits 15,43 = 1,1]

( (& (color=binary)

( (& (dpi=204)

(dpi-xyratio=204/98) )

(& (dpi=204)

(dpi-xyratio=204/196) )

(& (dpi=408)

(dpi-xyratio=408/391) )

(& (dpi=200)

(dpi-xyratio=200/100) ) ) )

(& (dpi=200) (dpi-xyratio=1) )

(& (dpi=400) (dpi-xyratio=1) ) )

[Bit 41 = 1]

(& (color=binary)

(dpi=204) (dpi-xyratio=204/391) )

[Bit 42 = 0]

-- no capabilities

[Bits 42,43,68,97 = 0,1,1,1]

(& (dpi=400) (dpi-xyratio=1) )

[Bits 68,98 = 1,1]

( (color=binary)

(& (color=[limited,mapped,grey,full])

(dpi=100) (dpi-xyratio=1) ) )

5.3 [Bits 36,68,69 = 0,1,1]

( (color=binary)

(& (color=[grey,full])

(color-space=CIELAB) ) )

[Bits 68,71 = 1,0]

( (color=[binary,limited])

(& (color=mapped)

(color-levels<=4096) )

(& (color=grey)

(color-levels<=256) )

(& (color=full)

(color-levels<=16777216) ) )

[Bits 68,74 = 1,0]

( (color=[binary,limited])

(& (color=[mapped,grey,full])

(color-illuminant=D50) ) )

[Bits 68,75 = 1,0]

( (color=[binary,limited])

(& (color=grey)

(CIELAB-L-min>=0)

(CIELAB-L-max<=100) )

(& (color=[mapped,full])

(CIELAB-L-min>=0)

(CIELAB-L-max<=100)

(CIELAB-a-min>=-85)

(CIELAB-a-max<=85)

(CIELAB-b-min>=-75)

(CIELAB-b-max<=125) ) )

5.4 [Bits 17,18 = 0,0]

(size-x<=2150/254)

[Bits 19,20 = 0,1]

-- no capability constraint

[Bits 76,77 = 1,0]

(Paper-size=[A4,Letter])

Combining these as indicated in section 5, we get the following:

(& ( (& (color=binary)

(image-coding=[MH,MR,MMR]) )

(& (color=[grey,full])

(image-coding=JPEG)

(image-coding-constraint=JPEG-T4E)

(& (color=full)

(image-coding=JPEG)

(color-subsampling=["1:1:1","4:1:1"]) ) )

(& (MRC-mode<=1) (MRC-max-stripe-size>=0) )

( ( (& (color=binary)

( (& (dpi=204) (dpi-xyratio=204/98) )

(& (dpi=204) (dpi-xyratio=204/196) )

(& (dpi=408) (dpi-xyratio=408/391) )

(& (dpi=200) (dpi-xyratio=200/100) ) ) )

(& (dpi=200) (dpi-xyratio=1) )

(& (dpi=400) (dpi-xyratio=1) ) )

(& (color=binary)

(dpi=204) (dpi-xyratio=204/391) )

(& (dpi=400) (dpi-xyratio=1) )

( (color=binary)

(& (color=[limited,mapped,grey,full])

(dpi=100) (dpi-xyratio=1) ) ) )

(& ( (color=binary)

(& (color=[grey,full]) (color-space=CIELAB) ) )

( (color=[binary,limited])

(& (color=mapped) (color-levels<=4096) )

(& (color=grey) (color-levels<=256) )

(& (color=full) (color-levels<=16777216) ) )

( (color=[binary,limited])

(& (color=[mapped,grey,full]) (color-illuminant=D50) ) )

( (color=[binary,limited])

(& (color=grey)

(CIELAB-L-min>=0)

(CIELAB-L-max<=100) )

(& (color=[mapped,full])

(CIELAB-L-min>=0)

(CIELAB-L-max<=100)

(CIELAB-a-min>=-85)

(CIELAB-a-max<=85)

(CIELAB-b-min>=-75)

(CIELAB-b-max<=125) ) ) )

(& (size-x<=2150/254)

(Paper-size=[A4,Letter]) ) )

This in turn simplifies to:

( (& (color=binary)

(image-coding=[MH,MR,MMR])

(MRC-mode<=1) (MRC-max-stripe-size>=0)

( (& (dpi=204) (dpi-xyratio=204/98) )

(& (dpi=204) (dpi-xyratio=204/196) )

(& (dpi=204) (dpi-xyratio=204/391) )

(& (dpi=408) (dpi-xyratio=408/391) )

(& (dpi=200) (dpi-xyratio=200/100) )

(& (dpi=200) (dpi-xyratio=1) )

(& (dpi=400) (dpi-xyratio=1) ) )

(size-x<=2150/254)

(Paper-size=[A4,Letter]) )

(& (color=grey)

(image-coding=JPEG)

(image-coding-constraint=JPEG-T4E)

(MRC-mode<=1) (MRC-max-stripe-size>=0)

(dpi=[100,200,400]) (dpi-xyratio=1)

(color-space=CIELAB)

(color-levels<=256)

(color-illuminant=D50)

(CIELAB-L-min>=0)

(CIELAB-L-max<=100)

(size-x<=2150/254)

(Paper-size=[A4,Letter]) )

(& (color=full)

(image-coding=JPEG)

(image-coding-constraint=JPEG-T4E)

(color-subsampling=["1:1:1","4:1:1"])

(MRC-mode<=1) (MRC-max-stripe-size>=0)

(dpi=[100,200,400]) (dpi-xyratio=1)

(color-space=CIELAB)

(color-levels<=16777216)

(color-illuminant=D50)

(CIELAB-L-min>=0)

(CIELAB-L-max<=100)

(CIELAB-a-min>=-85)

(CIELAB-a-max<=85)

(CIELAB-b-min>=-75)

(CIELAB-b-max<=125)

(size-x<=2150/254)

(Paper-size=[A4,Letter]) ) )

7. Security Considerations

Security considerations are discussed in the fax feature schema

description [4]. This memo is not believed to introduce any

additional security concerns.

8. Acknowledgements

The authors gratefully acknowledge the following persons who made

comments on earlier versions of this memo: Mr. Hiroshi Tamura and

and Dr. Robert Buckley.

9. References

[1] Holtman, K., Mutz, A. and T. Hardie, "Media Feature Tag

Registration Procedure", RFC2506, March 1999.

[2] Graham, K., "A syntax for describing media feature sets" RFC

2533, March 1999.

[3] Masinter, L., Holtman, K., Mutz, A. and D. Wing, "Media Features

for Display, Print, and Fax", RFC2534, March 1999.

[4] Klyne, G. and L. McIntyre, "Content Feature Schema for Internet

Fax (V2)", RFC2879, July 2000.

[5] Masinter, L. and D. Wing, "Extended Facsimile Using Internet

Mail", RFC2532, March 1999.

[6] "Procedures for document facsimile transmission in the general

switched telephone network" ITU-T Recommendation T.30 (1996),

including Amendment 1 (1997), Amendment 2 (1997), Amendment 3

(1998) and Amendment 4 (1999) International Telecommunications

Union

[7] "Standardization of Group 3 facsimile terminals for document

transmission" ITU-T Recommendation T.4 (1996), including

Amendment 1 (1997), Amendment 2 (1997) and Amendment 3 (1999)

International Telecommunications Union (Covers basic fax coding

formats: MH, MR; Annex E deals with some color image related

matters, including codes for optional custom illuminants. Annex

G deals with some aspects of JBIG encoding of multi-level

images.)

[8] "Facsimile coding schemes and coding control functions for Group

4 facsimile apparatus" ITU Recommendation T.6 International

Telecommunications Union (Commonly referred to as the MMR

standard; covers extended 2-D fax coding format)

[9] "Continuous-tone colour representation method for facsimile"

ITU-T Recommendation T.42 (1996) International

Telecommunications Union (Covers custom illuminant, gamut)

[10] "Colour and gray-scale image representation using lossless

coding scheme for facsimile" ITU-T Recommendation T.43 (1997)

International Telecommunications Union (Covers JBIG for

colour/grey images)

[11] "Mixed Raster Content (MRC)" ITU-T Recommendation T.44 (1999)

International Telecommunications Union

[12] "Information technology - Digital compression and coding of

continuous-tone still image - Requirements and guidelines" ITU-T

Recommendation T.81 (1992) ISO/IEC 10918-1:1993 International

Telecommunications Union (Commonly referred to as JPEG standard)

[13] "Information technology - Coded representation of picture and

audio information - Progressive bi-level image compression"

ITU-T Recommendation T.82 (1993) ISO/IEC 11544:1993

International Telecommunications Union (Commonly referred to as

JBIG1 standard)

[14] "Application profile for Recommendation T.82 - Progressive bi-

level image compression (JBIG1 coding scheme for facsimile

apparatus)" ITU-T Recommendation T.85 (1995), including

Amendment 1 (1996), Amendment 2 (1997) and Corrigendum 1 (1997)

International Telecommunications Union (Covers bi-level JBIG)

[15] Klyne, G., "Protocol-independent Content Negotiation Framework",

RFC2703, September 1999.

[16] "Programs from Decision Tables" E. Humbey Macdonald/American

Elsevier computer monographs (19), 1973 ISBN 0-444-19569-6/0-

356-04126-3 (This is an old title, and may not be still in

print. It contains a number of references to decision table

articles published in Communications of the ACM: August 1967,

September 1970, January 1966, November 1966, October 1968,

January 1965, February 1964, June 1970, November 1965, June

1965, February 1971.)

[17] "Mixed Raster Content (MRC) mode for G3 facsimile" ITU-T

Recommendation T.4, Annex H (1999) International

Telecommunications Union (Covers stripe size)

10. Authors' Addresses

Lloyd McIntyre

Xerox Corporation

Mailstop PAHV-121

3400 Hillview Ave.

Palo Alto, CA 94304 USA

Phone: +1-650-813-6762

Fax: +1-650-845-2340

EMail: Lloyd.McIntyre@pahv.xerox.com

Graham Klyne

Content Technologies Ltd.

1220 Parkview,

Arlington Business Park

Theale

Reading, RG7 4SA

United Kingdom

Phone: +44 118 930 1300

Fax: +44 118 930 1301

EMail: GK@ACM.ORG

11. Full Copyright Statement

Copyright (C) The Internet Society (2000). All Rights Reserved.

This document and translations of it may be copied and furnished to

others, and derivative works that comment on or otherwise explain it

or assist in its implementation may be prepared, copied, published

and distributed, in whole or in part, without restriction of any

kind, provided that the above copyright notice and this paragraph are

included on all such copies and derivative works. However, this

document itself may not be modified in any way, such as by removing

the copyright notice or references to the Internet Society or other

Internet organizations, except as needed for the purpose of

developing Internet standards in which case the procedures for

copyrights defined in the Internet Standards process must be

followed, or as required to translate it into languages other than

English.

The limited permissions granted above are perpetual and will not be

revoked by the Internet Society or its successors or assigns.

This document and the information contained herein is provided on an

"AS IS" basis and THE INTERNET SOCIETY AND THE INTERNET ENGINEERING

TASK FORCE DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING

BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION

HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF

MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Acknowledgement

Funding for the RFCEditor function is currently provided by the

Internet Society.

 
 
 
免责声明:本文为网络用户发布,其观点仅代表作者个人观点,与本站无关,本站仅提供信息存储服务。文中陈述内容未经本站证实,其真实性、完整性、及时性本站不作任何保证或承诺,请读者仅作参考,并请自行核实相关内容。
2023年上半年GDP全球前十五强
 百态   2023-10-24
美众议院议长启动对拜登的弹劾调查
 百态   2023-09-13
上海、济南、武汉等多地出现不明坠落物
 探索   2023-09-06
印度或要将国名改为“巴拉特”
 百态   2023-09-06
男子为女友送行,买票不登机被捕
 百态   2023-08-20
手机地震预警功能怎么开?
 干货   2023-08-06
女子4年卖2套房花700多万做美容:不但没变美脸,面部还出现变形
 百态   2023-08-04
住户一楼被水淹 还冲来8头猪
 百态   2023-07-31
女子体内爬出大量瓜子状活虫
 百态   2023-07-25
地球连续35年收到神秘规律性信号,网友:不要回答!
 探索   2023-07-21
全球镓价格本周大涨27%
 探索   2023-07-09
钱都流向了那些不缺钱的人,苦都留给了能吃苦的人
 探索   2023-07-02
倩女手游刀客魅者强控制(强混乱强眩晕强睡眠)和对应控制抗性的关系
 百态   2020-08-20
美国5月9日最新疫情:美国确诊人数突破131万
 百态   2020-05-09
荷兰政府宣布将集体辞职
 干货   2020-04-30
倩女幽魂手游师徒任务情义春秋猜成语答案逍遥观:鹏程万里
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案神机营:射石饮羽
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案昆仑山:拔刀相助
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案天工阁:鬼斧神工
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案丝路古道:单枪匹马
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案镇郊荒野:与虎谋皮
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案镇郊荒野:李代桃僵
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案镇郊荒野:指鹿为马
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案金陵:小鸟依人
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案金陵:千金买邻
 干货   2019-11-12
 
推荐阅读
 
 
 
>>返回首頁<<
 
靜靜地坐在廢墟上,四周的荒凉一望無際,忽然覺得,淒涼也很美
© 2005- 王朝網路 版權所有