如图1.b所示,在数据发送开始时,有一部分空时单元未被填入符号(对应图中右下角空白部分),为了保证D-BLAST的空时结构,在发送结束肯定也有一部分空时单元被浪费。如果采用burst模式的数字通信,并且一个burst的长度大于M(发送天线数目)个发送时间间隔 ,那么burst的长度越小,这种浪费越严重。它的数据检测需要一层一层的进行,如图1.b所示:先检测c0、c1和c2,然后a0、a1和a2,接着b0、b1和b2……
另外一种简化了的BLAST结构同样最先由贝尔实验室提出。它采用一种直接的天线与层的对应关系,即编码后的第k个子流直接送到第k根天线,不进行数据流与天线之间对应关系的周期改变。
如图1.c所示,它的数据流在时间与空间上为连续的垂直列向量,称为V-BLAST(Vertical-BLAST)。由于V-BLAST中数据子流与天线之间只是简单的对应关系,因此在检测过程中,只要知道数据来自哪根天线即可以判断其是哪一层的数据,检测过程简单。
考虑到D-BLAST以及V-BALST模式的优缺点,一种不同于D-DBLAST与V-BLAST的空时编码结构被提出:T-BLAST。等文献分别提及这种结构。它的层在空间与时间上呈螺纹(Threaded)状分布,如图2所示。
原始数据流被多路分解为若干子流之后,每个子流被对应的天线发送出去,并且这种对应关系周期性改变,与D-BLAST系统不同的是,在发送的初始阶段并不是只有一根天线进行发送,而是所有天线均进行发送,使得单从一个发送时间间隔 来看,它的空时分布很像V-BALST,只不过在不同的时间间隔中,子数据流与天线的对应关系周期性改变。
更普通的T-BLAST结构是这种对应关系不是周期性改变,而是随机改变。这样T-BLAST不仅可以使得所有子流共享空间信道,而且没有空时单元的浪费,并且可以使用V-BLAST检测算法进行检测。
3.码复用方式
随着第三代移动通信技术的发展,以及HSDPA对高速数据传输的需求。无线MIMO技术详解与CDMA系统结合的码复用(Code-reuse)方式被提出。所谓码复用方式是指通过多根天线上发送出去的不同数据层,采用的扩频码相同。
这样每一层中多个CDMA码道上的数据可以依靠它们采用的不同的扩频码进行区分,共享同一个扩频码的不同层中的数据可以依靠它们经历的不同的空间信道的特性进行区分。码复用方式又可以进一步扩展为同码传输方式和异码传输方式。
其中扩频码是信道化码和扰码的乘积,如果不同层上的数据采用的信道化码和扰码均相同,称为同码传输方式;如果不同层上的数据采用的信道化码不同或者扰码不同,称为异码传输方式。在码字资源较为丰富时,可以采用异码传输方式提高系统的整体性能。
一个典型的应用于WCDMA系统的码复用方式发射机结构图如下所示。高速率数据流被多路分解为MN个子数据流,M组子数据流中的第n个子流使用第n个扩谱码。第m个子数据流通过第m根天线发送出去,这样共享同一个扩谱码的子数据流通过不同的天线被发送出去。
所有M个共享同一个码的子数据流,可以在接收端通过它的空间特性以及多天线接收和空间信号处理技术被区分出来。信道估计可以通过M个正交的下行导频序列得到。共享同一个码的M个子数据流之间会产生空间多址干扰(MAI)。
在平坦衰落信道中,使用不同的码的子数据流之间不会彼此影响,因为码与码之间是正交的,对于每一组使用相同的码的子数据流,可以使用多用户检测消除MAI的影响。比如最大似然(ML)检测器和V-BLAST检测器。因为最大似然检测器的复杂度与M呈指数关系,V-BLAST检测器是一个次优和低复杂度的选择。
V-BLAST检测器包括两部分:线性变换和有序的连续干扰消除。线性变换可以使用迫零(ZF)准则或者最小均方误差(MMSE)准则消除MAI。线性变换之后具有最大SINR的编码符号被检测出来,并且把它从所有接收信号中减去。
对于修订后的接收信号向量,继续使用线性变换和有序的连续干扰消除方法,进行信号提取,直到所有的子数据流被检测出来。最后MN个子数据流被多路合成为一个高速率的数据流,然后进行逆映射,解交织和解码。
随着无线MIMO技术详解的发展,以及第三代移动通信系统对高数据传输速率日益增长的需求,把无线MIMO技术详解应用TD-SCDMA系统中成为一种较好的选择。这不仅使得TD-SCDMA系统可以支持更高的数据传输速率,为其提供更丰富的服务提供了支持,而且与智能天线技术形成了有效的补充。