分享
 
 
 

数据结构学习(c++)——二叉树

王朝vc·作者佚名  2006-01-08
窄屏简体版  字體: |||超大  

注:本文只是对学习清华殷人昆《数据结构(用面向对象方法与c++描述)》的人有些微帮助,其他人就没有必要浪费时间看了。因为老实说这本书里的代码实现的确不怎么样。

我的目的,就是努力实现和书里的代码相同的接口,尽最大可能和原代码一摸一样。因为这样的话,一则自己以后看起来比较方便,只要对着课本翻翻就行了;二则这样可能对别的学这本书的人有一定的好处。由于自己的习惯,我在原书的类名前加了_。

/*

Name: _BinaryTree.h

Copyright:

Author: elmar

Date: 19-07-03 23:43

Description:

*/

#ifndef _BinaryTree_H

#define _BinaryTree_H

#include <iostream>

#include <deque> //用于Insert中的层次遍历

using namespace std;

template <class Type> class _BinaryTree;

template <class Type> class _BinTreeNode

{

friend class _BinaryTree<Type>;

public:

_BinTreeNode():data(Type()), leftChild(NULL), rightChild(NULL){}

_BinTreeNode(Type item,

_BinTreeNode<Type>* left = NULL,

_BinTreeNode<Type>* right = NULL);

_BinTreeNode(const _BinTreeNode<Type>& b){*this = b;}

Type GetData() const {return data;}

_BinTreeNode<Type>* GetLeft() const {return leftChild;}

_BinTreeNode<Type>* GetRight() const {return rightChild;}

void SetData(const Type& item) {data = item;}

void SetLeft(_BinTreeNode<Type>* L) {leftChild = L;}

void SetRight(_BinTreeNode<Type>* R) {rightChild = R;}

_BinTreeNode<Type>& operator = (const _BinTreeNode<Type>& b);

private:

_BinTreeNode<Type> *leftChild, *rightChild;

Type data;

};

template <class Type> class _BinaryTree

{

public:

_BinaryTree(): root(NULL){}

_BinaryTree(Type value): RefValue(value), root(NULL){}

_BinaryTree(const _BinaryTree<Type>& bt);

virtual ~_BinaryTree(){destroy(root);}

virtual bool IsEmpty() {return root == NULL ? true : false;}

virtual _BinTreeNode<Type>* Parent(_BinTreeNode<Type>* current)

{return root == NULL || root == current ? NULL : Parent(root, current);}

virtual _BinTreeNode<Type>* LeftChild(_BinTreeNode<Type>* current)

{return root != NULL ? current->leftChild : NULL;}

virtual _BinTreeNode<Type>* RightChild(_BinTreeNode<Type>* current)

{return root != NULL ? current->rightChild : NULL;}

virtual int Insert(const Type& item){return Insert(root, item);}

// virtual int Find(const Type& item) const;

const _BinTreeNode<Type>* GetRoot() const {return root;}

_BinaryTree<Type>& operator = (const _BinaryTree<Type>&);

_BinaryTree<Type>& operator += (const _BinaryTree<Type>& bt){return Append(bt);}

friend istream& operator >> (istream& in, _BinaryTree<Type>& Tree)

{

Type item;

cout << "Construct binary tree: " << endl;

cout << "Input data (end with " << Tree.RefValue <<" ):";

in >> item;

while (item != Tree.RefValue)

{

Tree.Insert(item);

cout << "Input data (end with " << Tree.RefValue <<" ):";

in >> item;

}

return in;

}

friend ostream& operator << (ostream& out, _BinaryTree<Type>& Tree)

{

out << "Preorder traversal of binary tree." << endl;

Tree.Traverse(Tree.root, out);

out << endl;

return out;

}

private:

_BinTreeNode<Type>* root; //二叉数的根指针

Type RefValue; //数据输入停止的标志

_BinTreeNode<Type>* Parent(_BinTreeNode<Type>* start, _BinTreeNode<Type>* current);

int Insert(_BinTreeNode<Type>*& current, const Type& item); //操作成功返回0,否则-1

void Traverse(_BinTreeNode<Type>* current, ostream& out) const; //输出根为current的二叉树

// int Find(_BinTreeNode<Type>* current, const Type& item) const;

void destroy(_BinTreeNode<Type>* current);

_BinaryTree<Type>& Append(const _BinaryTree<Type>& bt); //为elmar所加的函数。把二叉树bt加到当前树上

};

template <class Type> _BinTreeNode<Type>::_BinTreeNode(Type item,

_BinTreeNode<Type>* left,

_BinTreeNode<Type>* right)

{

data = item;

leftChild = left;

rightChild = right;

}

template <class Type> _BinTreeNode<Type>& _BinTreeNode<Type>::operator = (const _BinTreeNode<Type>& b)

{

leftChild = b.leftChild; rightChild = b.rightChild; data = b.data;

return *this;

}

template <class Type> _BinaryTree<Type>::_BinaryTree(const _BinaryTree<Type>& bt)

{

root = NULL;

RefValue = bt.RefValue;

Append(bt);

}

template <class Type> void _BinaryTree<Type>::destroy(_BinTreeNode<Type>* current)

{

if (current !=NULL)

{

destroy(current->leftChild);

destroy(current->rightChild);

delete current;

}

}

template <class Type> _BinTreeNode<Type>*

_BinaryTree<Type>::Parent(_BinTreeNode<Type>* start, _BinTreeNode<Type>* current)

{

if (start == NULL) return NULL;

if (start->leftChild == current || start->rightChild == current) return start;

_BinTreeNode<Type>* p;

if ((p = Parent(start->leftChild, current)) != NULL) return p;

else return Parent(start->rightChild, current);

}

template <class Type> void

_BinaryTree<Type>::Traverse(_BinTreeNode<Type>* current, ostream& out) const

{

if (current != NULL)

{

out << current->data << ' ';

Traverse(current->leftChild, out);

Traverse(current->rightChild, out);

}

}

//层次遍历以current为根的二叉树,把item插入在第一个叶子的的左指针,

//或第一个缺右孩子的节点的右指针

template <class Type> int

_BinaryTree<Type>::Insert(_BinTreeNode<Type>*& current, const Type& item)

{

_BinTreeNode<Type>* p = new _BinTreeNode<Type>(item);

if (p == NULL) return -1;

if (current == NULL)

{

current = p;

return 0;

}

else

{

deque<_BinTreeNode<Type>*>* deck = new deque<_BinTreeNode<Type>*>;//队列

deck->push_back(current);

typename deque<_BinTreeNode<Type>*>::const_iterator iter;

while (true)

{

iter = deck->begin();

deck->pop_front();

if ((*iter)->leftChild == NULL)

{

(*iter)->leftChild = p;

delete deck;

return 0;

}

else if ((*iter)->rightChild == NULL)

{

(*iter)->rightChild = p;

delete deck;

return 0;

}

else

{

deck->push_back((*iter)->leftChild);

deck->push_back((*iter)->rightChild);

}

}

}

}

template <class Type> _BinaryTree<Type>& _BinaryTree<Type>::Append(const _BinaryTree<Type>& bt)

{

deque<_BinTreeNode<Type>*>* deck = new deque<_BinTreeNode<Type>*>;

deck->push_back(bt.root);

typename deque<_BinTreeNode<Type>*>::const_iterator iter;

while (!deck->empty())

{

iter = deck->begin();

deck->pop_front();

this->Insert((*iter)->GetData());

if ((*iter)->leftChild != NULL)

{

deck->push_back((*iter)->leftChild);

}

if ((*iter)->rightChild != NULL)

{

deck->push_back((*iter)->rightChild);

}

}//while

delete deck;

return *this;

}

template <class Type> _BinaryTree<Type>& _BinaryTree<Type>::operator = (const _BinaryTree<Type>& bt)

{

RefValue = bt.RefValue;

if (bt.root == NULL) return *this;

if (!this->IsEmpty())this->destroy(root);

return this->Append(bt);

}

#endif

 
 
 
免责声明:本文为网络用户发布,其观点仅代表作者个人观点,与本站无关,本站仅提供信息存储服务。文中陈述内容未经本站证实,其真实性、完整性、及时性本站不作任何保证或承诺,请读者仅作参考,并请自行核实相关内容。
2023年上半年GDP全球前十五强
 百态   2023-10-24
美众议院议长启动对拜登的弹劾调查
 百态   2023-09-13
上海、济南、武汉等多地出现不明坠落物
 探索   2023-09-06
印度或要将国名改为“巴拉特”
 百态   2023-09-06
男子为女友送行,买票不登机被捕
 百态   2023-08-20
手机地震预警功能怎么开?
 干货   2023-08-06
女子4年卖2套房花700多万做美容:不但没变美脸,面部还出现变形
 百态   2023-08-04
住户一楼被水淹 还冲来8头猪
 百态   2023-07-31
女子体内爬出大量瓜子状活虫
 百态   2023-07-25
地球连续35年收到神秘规律性信号,网友:不要回答!
 探索   2023-07-21
全球镓价格本周大涨27%
 探索   2023-07-09
钱都流向了那些不缺钱的人,苦都留给了能吃苦的人
 探索   2023-07-02
倩女手游刀客魅者强控制(强混乱强眩晕强睡眠)和对应控制抗性的关系
 百态   2020-08-20
美国5月9日最新疫情:美国确诊人数突破131万
 百态   2020-05-09
荷兰政府宣布将集体辞职
 干货   2020-04-30
倩女幽魂手游师徒任务情义春秋猜成语答案逍遥观:鹏程万里
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案神机营:射石饮羽
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案昆仑山:拔刀相助
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案天工阁:鬼斧神工
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案丝路古道:单枪匹马
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案镇郊荒野:与虎谋皮
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案镇郊荒野:李代桃僵
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案镇郊荒野:指鹿为马
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案金陵:小鸟依人
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案金陵:千金买邻
 干货   2019-11-12
 
推荐阅读
 
 
 
>>返回首頁<<
 
靜靜地坐在廢墟上,四周的荒凉一望無際,忽然覺得,淒涼也很美
© 2005- 王朝網路 版權所有