设A,B为n阶矩阵,如果有n阶非奇异矩阵P存在,使得P^(-1)*A*P=B成立,则称矩阵A与B相似,记为A~B.
("P^(-1)"表示P的-1次幂,也就是P的逆矩阵, "*" 表示乘号, "~" 读作"相似于".)
相似矩阵性质
设A,B和C是任意同阶方阵,则有:
(1)A~A
(2) 若A~B,则B~A
(3) 若A~B,B~C,则A~C
(4) 若A~B,则
(5) 若A~B,且A可逆,则B也可逆,且A~B。
(6) 若A~B,则A与B有相同的特征方程,有相同的特征值。
若A与对角矩阵相似,则称A为可对角化矩阵,若n阶方阵A有n个线性
无关的特征向量,则称A为单纯矩阵。