数群-满足条件一般说来,群指的是满足以下四个条件的一组元素的集合:(1)封闭性 (2)结合律成立 (3)单位元存在 (4)逆元存在。
群论-由来群论是法国传奇式人物Golois的发明。他用该理论解决了五次方程问题。今天,群论经常应用于物理领域。粗略地说,我们经常用群论来研究对称性,这些对称性能够反映出在某种变化下的某些变化量的性质。
在物理上,置换群是很重要的一类群。置换群包括S3群,二维旋转群,三维旋转群以及和反应四维时空相对应的洛仑兹群。洛仑兹群加上四维变换就构成了Poincare群。
在研究群时,使用表象而非群元是较方便的,因为群元一般来说都是抽象的事物。表象可以看成矩阵,而矩阵具有和群元相同的性质。不可约表象和单位表象是表象理论中的重要概念。