分享
 
 
 

黎曼球面

王朝百科·作者佚名  2010-09-08
窄屏简体版  字體: |||超大  

数学上,黎曼曲面是一种将复数平面加上一个无穷远点的扩张,使得下面这类公式至少在某种意义下有意义

它由19世纪数学家黎曼而得名。也称为

复射影直线,记为 ,和扩充复平面,记为 或者. 从纯代数的角度,复数加上一个无穷远点构成一个数系称为扩充复数。无穷远点的算数有时和一般的代数规则不符,因此扩充复数不构成一个代数域。但是,黎曼球面在几何和解析角度都行为良好,甚至在无穷远点也不例外;它是一个一维复流形,也称黎曼曲面。

复分析中,黎曼球面对于亚纯函数这个优雅的理论很有帮助。黎曼球面在射影几何和代数几何中作为复流形、射影空间和代数簇的基本例子到处出现。它在涉及分析和几何的其他学科也很有用,譬如量子力学和物理学其他分支。

作为复流形作为一维复流形,黎曼曲面可以由两个图卡描述,每个的定义域都是复数平面.令ζ和ξ为上的复坐标。将非零复数ζ和非零复数ξ用如下转移映射等同起来:

ζ = 1 / ξ, ξ = 1 / ζ. 因为这些变换映射为全纯函数,他们定义了一个复流形,称为黎曼球面。

直观地来看,这些变换映射表示了如何将两个平面粘合成一个黎曼球面。两个面用一种"从里翻出来"的方式粘合,所以他们几乎处处重合,每个平面(用自己的原点)贡献对方平面上缺少的一点。换言之,(几乎)所有黎曼球面上的点既有ζ值也有ξ值,而两个值由ζ = 1 / ξ关联。ξ = 0处的点应该具有ζ-value "1 / 0";从这个意义上讲,ξ-图的原点是ζ-图上的""。对称地,ζ-图的原点对应于ξ-图上的.

拓扑上,最后的结果是从平面到球面的单点紧致化。但是,黎曼球面不单单是一个拓扑球面。它是具有复结构的拓扑球面,所以球面上的每个点都有一个领域可以通过双全纯函数和同胚。

另一方面,黎曼曲面分类的的中心结果单值化定理,断言唯一的单连通一维复流形为复平面、双曲平面、和黎曼球面。在这三者中,黎曼球面是唯一的闭曲面(无边界的紧致曲面)。因此二维球面只有唯一的复结构将它变为一维复流形。

作为复射影线黎曼球面也可以定义为复射影线。这也就是的子集,由所有非零复数对(α,β)构成,模如下等价关系:

(α,β) = (λα,λβ) 对于所有非零复数λ成立。复平面用坐标ζ,可以映射到复射影线:

(α,β) = (ζ,1). 另一个用坐标ξ也映射到复射影线

(α,β) = (1,ξ). 这两个复图覆盖整个射影线。对于非零ξ,等同关系:

(1,ξ) = (1 / ξ,1) = (ζ,1) 给出了变换映射ζ = 1 / ξ和ξ = 1 / ζ,同上文一致。

这个黎曼球面的定义和射影几何直接相关。例如任何复射影平面上的直线(或者光滑圆锥曲线)双全纯等价于复射影线。这个表达对于研究下文所述的球面的自同构也很方便。

作为球面从复数A到黎曼球面上的一点α的球极投影。

黎曼球面可以显示为三维实空间中的单位球面x+y+z= 1.为此,考虑从单位球减去一点(0,0,1)到(赤道)平面z= 0的球极投影,可以将该平面等同于复平面ζ =x+iy.在笛卡尔坐标系(x,y,z)和球面坐标系(φ,θ)中(其中φ为天顶角而θ为方位角),该投影为

类似的,从(0,0, − 1)到z= 0平面的球极投影将另一份复平面ξ =x−iy等同于赤道平面,记为

(两份复平面和平面z= 0的对应方式不同。必须使用定向翻转来保证球面上定向的一致性,实际上复共轭使得变换映射成为全纯函数。)ζ-坐标和ξ-坐标之间的变换函数可以通过将其中一个映射和另一个的逆的复合得到。它们就是如上所述的ζ = 1 / ξ和ξ = 1 / ζ。因此单位球面和黎曼球面微分同胚。

在这个微分同胚下,ζ-图中的单位圆,ξ-图中的单位圆,以及单位球面的赤道可以等同起来。单位圆盘 | ζ | < 1和南半球面z< 0,单位圆盘 | ξ | < 1和北半球面z> 0分别等同。

度量黎曼曲面没有特定的黎曼度量。但是,黎曼曲面的复结构的确在共形等价下确定了唯一的度量。(两个度量称为共形等价,如果他们的区别只是一个正光滑函数的因子。)反过来,可定向曲面上的任意度量唯一的决定一个复结构,该结构在共形等价下依赖于该度量。因此可定向曲面的复结构和该曲面上的度量的共形类有一一对应。

给定共形类,可以用共形对称性找到一个有合适属性的代表度量。精确地讲,每个共形类总是有一个常曲率完备度量。

在黎曼球面的情况,高斯-博内定理表明常曲率度量必须有正的曲率K。因而该度量必须通过球极投影等度于中半径为的球面。对于黎曼球面上的ζ-图,K= 1度量可以给出如下:

在实坐标ζ =u+iv中,该公式为:

除了一个常数因子,该度量和复射影空间(黎曼球面就是一个特例)中的富比尼-施图迪度量一样。

反过来,令S代表(作为微分流形或者拓扑流形的)球面。按照单值化定理,存在唯一的S上的复结构。由此可见,S上的度量和球面度量共形等价。所有这样的度量构成一个共形类。因此"圆球"度量不是黎曼球面的内在度量,因为"圆形"并不是共形几何的不变量。黎曼球面只是一个共形流形而非黎曼流形。但是,如果需要用到黎曼球面上的黎曼度量,圆形度量是一个很自然的选择。

自同构作用于球面上以及作用于球极投影的平面上的莫比乌斯变换。

主条目:莫比乌斯变换

理解数学对象的自同构群有助于对该对象的研究,自同构也就是对象到自身保持其基本结构不变的映射。对于黎曼球面,自同构就是黎曼球面到自身的可逆双全纯映射。唯一可能的这样的映射只有莫比乌斯变换。这些变换有如下形式:

其中a、b、c、和d为复数,满足.莫比乌斯变换的例子包括膨胀,旋转,平移,和复倒数。事实上,所有莫比乌斯变换可以有这些特例的复合得到。

将莫比乌斯变换视作复射影线上的变换很有益。在射影坐标下,变换f可以写作

这样,莫比乌斯变换可以表述为行列式非零的复矩阵;两个矩阵产生同样的莫比乌斯变换当且仅当他们只差一个非零常数。这样莫比乌斯边喊恰好对应于射影线性变换.

如果赋予黎曼球面富比尼-施图迪度量,则不是所有的莫比乌斯变换是等度的;例如膨胀和平移就不是。等度变换构成的一个子群,也即PSU2.该子群同构于旋转群SO(3),它是单位球在中的等度群。

应用复分析中,复平面(或者任何黎曼曲面)上的的亚纯函数是两个全纯函数f和g的比值f/g.作为到复数的映射,任何g为零的地方,它就没有定义。但是,它引出了一个全纯映射(f,g)到复射影线,甚至在g= 0处也有定义。这个构造对于研究全纯和亚纯函数很有用。例如,紧致黎曼曲面上不存在存在非常数复值全纯映射,但是有很多到复射影线上的全纯映射。

黎曼球面有很多物理中的应用。量子力学中,复射影线上的点是光子极化态,自旋为1/2的重亚原子粒子和一般二态粒子的的自旋态的自然取值。黎曼球面被推荐为天体球面的广义相对论模型。弦论中,弦的世界面是黎曼曲面,而黎曼球面作为最简单的黎曼曲面有重要的作用。它在扭子理论中也很重要。

 
 
 
免责声明:本文为网络用户发布,其观点仅代表作者个人观点,与本站无关,本站仅提供信息存储服务。文中陈述内容未经本站证实,其真实性、完整性、及时性本站不作任何保证或承诺,请读者仅作参考,并请自行核实相关内容。
2023年上半年GDP全球前十五强
 百态   2023-10-24
美众议院议长启动对拜登的弹劾调查
 百态   2023-09-13
上海、济南、武汉等多地出现不明坠落物
 探索   2023-09-06
印度或要将国名改为“巴拉特”
 百态   2023-09-06
男子为女友送行,买票不登机被捕
 百态   2023-08-20
手机地震预警功能怎么开?
 干货   2023-08-06
女子4年卖2套房花700多万做美容:不但没变美脸,面部还出现变形
 百态   2023-08-04
住户一楼被水淹 还冲来8头猪
 百态   2023-07-31
女子体内爬出大量瓜子状活虫
 百态   2023-07-25
地球连续35年收到神秘规律性信号,网友:不要回答!
 探索   2023-07-21
全球镓价格本周大涨27%
 探索   2023-07-09
钱都流向了那些不缺钱的人,苦都留给了能吃苦的人
 探索   2023-07-02
倩女手游刀客魅者强控制(强混乱强眩晕强睡眠)和对应控制抗性的关系
 百态   2020-08-20
美国5月9日最新疫情:美国确诊人数突破131万
 百态   2020-05-09
荷兰政府宣布将集体辞职
 干货   2020-04-30
倩女幽魂手游师徒任务情义春秋猜成语答案逍遥观:鹏程万里
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案神机营:射石饮羽
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案昆仑山:拔刀相助
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案天工阁:鬼斧神工
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案丝路古道:单枪匹马
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案镇郊荒野:与虎谋皮
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案镇郊荒野:李代桃僵
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案镇郊荒野:指鹿为马
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案金陵:小鸟依人
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案金陵:千金买邻
 干货   2019-11-12
 
推荐阅读
 
 
 
>>返回首頁<<
靜靜地坐在廢墟上,四周的荒凉一望無際,忽然覺得,淒涼也很美
© 2005- 王朝網路 版權所有