分享
 
 
 

实验设计和分析

王朝百科·作者佚名  2012-03-05
窄屏简体版  字體: |||超大  

图书信息书 名: 实验设计和分

作者:狄恩(AngelaDean)

出版社:世界图书出版公司

出版时间: 2010年4月1日

ISBN: 9787510005619

开本: 16开

定价: 129.00元

内容简介《实验设计和分析》主要内容包括:Principles and Techniques、Design: Basic Principles and Techniques、The Art of Experimentation、Replication、Blocking、Randomization、Analysis: Basic Principles and Techniques、Planning Experiments、A Checklist for Planning Experiments、Real Experiment——Cotton-Spinning Experiment等等。

图书目录Preface

1. Principles and Techniques

1.1. Design: Basic Principles and Techniques

1.1.1. The Art of Experimentation

1.1.2. Replication

1.1.3. Blocking

1.1.4. Randomization

1.2. Analysis: Basic Principles and Techniques

2. Planning Experiments

2.1. Introduction

2.2. A Checklist for Planning Experiments

2.3. A Real Experiment——Cotton-Spinning Experiment

2.4. Some Standard Experimental Designs

2.4.1. Completely Randomized Designs

2.4.2. Block Designs

2.4.3. Designs with Two or More Blocking Factors

2.4.4. Split-Plot Designs

2.5. More Real Experiments

2.5.1. Soap Experiment

2.5.2. Battery Experiment

2.5.3. Cake-Baking Experiment

Exercises

3. Designs with One Source of Variation

3.1. Introduction

3.2. Randomization

3.3. Model for a Completely Randomized Design

3.4. Estimation of Parameters

3.4.1. Estimable Functions of Parameters

3.4.2. Notation

3.4.3. Obtaining Least Squares Estimates

3.4.4. Properties of Least Squares Estimators

3.4.5. Estimation ofo2

3.4.6. Confidence Bound for ~r2

3.5. One-Way Analysis of Variance

3.5.1. Testing Equality of Treatment Effects

3.5.2. Use of p-Values

3.6. Sample Sizes

3.6.1. Expected Mean Squares for Treatments

3.6.2. Sample Sizes Using Power of a Test

3.7. A Real Experiment——-Soap Experiment, Continued

3.7.1. Checklist, Continued

3.7.2. Data Collection and Analysis

3.7.3. Discussion by the Experimenter

3.7.4. Further Observations by the Experimenter

3.8. Using SAS Software

3.8.1. Randomization

3.8.2. Analysis of Variance

Exercises

4. Inferences for Contrasts and Treatment Means

4.1. Introduction

4.2. Contrasts

4.2.1. Pairwise Comparisons

4.2.2. Treatment Versus Control

4.2.3. Difference of Averages

4.2.4. Trends

4.3. Individual Contrasts and Treatment Means

4.3.1. Confidence Interval for a Single Contrast

4.3.2. Confidence Interval for a Single Treatment Mean

4.3.3. Hypothesis Test for a Single Contrast or Treatment Mean

4.4. Methods of Multiple Comparisons

4.4.1. Multiple Confidence Intervals

4.4.2. Bonferroni Method for Preplanned Comparisons

4.4.3. Scheff6 Method of Multiple Comparisons

4.4.4. Tukey Method for All Pairwise Comparisons

4.4.5. Dunnett Method for Treatment-Versus-Control Comparisons

4.4.6. Hsu Method for Multiple Comparisons with the Best

reatment

4.4.7. Combination of Methods

4.4.8. Methods Not Controlling Experimentwise Error Rate

4.5. Sample Sizes

4.6. Using SAS Software

4.6.1. Inferences on Individual Contrasts

4.6.2. Multiple Comparisons

Exercises

5. Checking Model Assumptions

5.1. Introduction

5.2. Strategy for Checking Model Assumptions

5.2.1. Residuals

5.2.2. Residual Plots

5.3. Checking the Fit of the Model

5.4. Checking for Outliers

5.5. Checking Independence of the Error Terms

5.6. Checking the Equal Variance Assumption

5.6.1. Detection of Unequal Variances

5.6.2. Data Transformations to Equalize Variances

5.6.3. Analysis with Unequal Error Variances

5.7. Checking the Normality Assumption

5.8. Using SAS Software

5.8.1. Using SAS to Generate Residual Plots

5.8.2. Transforming the Data

Exercises

6. Experiments with Two Crossed Treatment Factors

6.1. Introduction

6.2. Models and Factorial Effects

6.2.1. The Meaning of Interaction

6.2.2. Models for Two Treatment Factors

6.2.3. Checking the Assumptions on the Model

6.3. Contrasts

6.3.1. Contrasts for Main Effects and Interactions

6.3.2. Writing Contrasts as Coefficient Lists

6.4. Analysis of the Two-Way Complete Model

6.4.1. Least Squares Estimators for the Two-Way Complete Model

6.4.2. Estimation ofo~ for the Two-Way Complete Model

6.4.3. Multiple Comparisons for the Complete Model

6.4.4. Analysis of Variance for the Complete Model

6.5. Analysis of the Two-Way Main-Effects Model

6.5.1. Least Squares Estimators for the Main-Effects Model

6.5.2. Estimation ofa2 in the Main-Effects Model

6.5.3. Multiple Comparisons for the Main-Effects Model

6.5.4. Unequal Variances

6.5.5. Analysis of Variance for Equal Sample Sizes

6.5.6. Model Building

6.6. Calculating Sample Sizes

6.7. Small Experiments

6.7.1. One Observation per Cell

6.7.2. Analysis Based on Orthogonal Contrasts

6.7.3. Tukey's Test for Additivity

6.7.4. A Real Experiment——Air Velocity Experiment

6.8. Using SAS Software

6.8.1. Contrasts and Multiple Comparisons

6.8.2. Plots

6.8.3. One Observation per Cell

Exercises

7. Several Crossed Treatment Factors

7.1. Introduction

7.2. Models and Factorial Effects

7.2.1. Models

7.2.2. The Meaning of Interaction

7.2.3. Separability of Factorial Effects

7.2.4. Estimation of Factorial Contrasts

7.3. Analysis——Equal Sample Sizes

7.4. A Real Experiment——Popcorn-Microwave Experiment

7.5. One Observation per Cell

7.5.1. Analysis Assuming That Certain Interaction Effects Are egligible

7.5.2. Analysis Using Normal Probability Plot of Effect Estimates

7.5.3. Analysis Using Confidence Intervals

7.6. Design for the Control of Noise Variability

7.6.1. Analysis of Design-by-Noise Interactions

7.6.2. Analyzing the Effects of Design Factors on Variability .

7.7. Using SAS Software

7.7.1. Normal Probability Plots of Contrast Estimates

7.7.2. Voss-Wang Confidence Interval Method

7.7.3. Identification of Robust Factor Settings

7.7.4. Experiments with Empty Cells

Exercises

8. Polynomial Regression

8.1. Introduction

8.2. Models

8.3. Least Squares Estimation (Optional)

8.3.1. Normal Equations

……

9. Analysis of Covariance

10. Complete Block Designs

11. Incomplete Block Designs

12. Designs with Two Blocking Factors

13. Confounded Two-Level Factorial Experiments

14. Confounding in General Factorial Experiments

15. Fractional Factorial Experiments

16. esponse Surface Methodology

17. andom Effects and Variance Components

18. estde Models

19. plit-Plot Designs

A. ables

Bibliography

Index of Authors

Index of Experiments

Index of Subjects

 
 
 
免责声明:本文为网络用户发布,其观点仅代表作者个人观点,与本站无关,本站仅提供信息存储服务。文中陈述内容未经本站证实,其真实性、完整性、及时性本站不作任何保证或承诺,请读者仅作参考,并请自行核实相关内容。
2023年上半年GDP全球前十五强
 百态   2023-10-24
美众议院议长启动对拜登的弹劾调查
 百态   2023-09-13
上海、济南、武汉等多地出现不明坠落物
 探索   2023-09-06
印度或要将国名改为“巴拉特”
 百态   2023-09-06
男子为女友送行,买票不登机被捕
 百态   2023-08-20
手机地震预警功能怎么开?
 干货   2023-08-06
女子4年卖2套房花700多万做美容:不但没变美脸,面部还出现变形
 百态   2023-08-04
住户一楼被水淹 还冲来8头猪
 百态   2023-07-31
女子体内爬出大量瓜子状活虫
 百态   2023-07-25
地球连续35年收到神秘规律性信号,网友:不要回答!
 探索   2023-07-21
全球镓价格本周大涨27%
 探索   2023-07-09
钱都流向了那些不缺钱的人,苦都留给了能吃苦的人
 探索   2023-07-02
倩女手游刀客魅者强控制(强混乱强眩晕强睡眠)和对应控制抗性的关系
 百态   2020-08-20
美国5月9日最新疫情:美国确诊人数突破131万
 百态   2020-05-09
荷兰政府宣布将集体辞职
 干货   2020-04-30
倩女幽魂手游师徒任务情义春秋猜成语答案逍遥观:鹏程万里
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案神机营:射石饮羽
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案昆仑山:拔刀相助
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案天工阁:鬼斧神工
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案丝路古道:单枪匹马
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案镇郊荒野:与虎谋皮
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案镇郊荒野:李代桃僵
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案镇郊荒野:指鹿为马
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案金陵:小鸟依人
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案金陵:千金买邻
 干货   2019-11-12
 
推荐阅读
 
 
 
>>返回首頁<<
靜靜地坐在廢墟上,四周的荒凉一望無際,忽然覺得,淒涼也很美
© 2005- 王朝網路 版權所有