代数曲线

王朝百科·作者佚名  2010-01-07
窄屏简体版  字體: |||超大  

代数曲线,又称紧黎曼面。 它是紧的2维定向实流形,也就是复的一维流形。 代数曲线是代数几何中最简单的一类研究对象。

每条代数曲线都自带了一个数值不变量---亏格g. 从实流形角度看,亏格就是其上“洞”的个数。

按照亏格的大小,我们可以将代数曲线分类。 比如:

g=0 就成为射影直线;

g=1 称为椭圆曲线;

g=2超椭圆曲线。。。。。。等等

具有同样亏格的曲线组成的集合成为曲线的模空间。 比如

g=0的曲线模空间是由一个点组成;

g=1的曲线模空间是上半平面。。。。。。等等

曲线的模空间是代数几何里最重要的一类几何对象。

我们可以考虑定义在代数曲线上的半纯函数。 半纯函数的零点和极点的集合是由有限个点组成。 我们把这个集合称为主除子。 更一般的,我们可以定义除子的概念,这里不再详述。

除子概念是曲线论里最基本的概念。 与其相关的一个重要结果就是所谓的Riemann-Roch 定理。 这个定理把分析和拓扑巧妙的联系起来,揭示出两者间的深刻关系。

 
 
 
免责声明:本文为网络用户发布,其观点仅代表作者个人观点,与本站无关,本站仅提供信息存储服务。文中陈述内容未经本站证实,其真实性、完整性、及时性本站不作任何保证或承诺,请读者仅作参考,并请自行核实相关内容。
 
 
© 2005- 王朝網路 版權所有 導航