辐射换热
radiation heat transfer
两个温度不同且互不接触的物体之间通过电磁波进行的换热过程,是传热学的重要研究内容之一。
辐射换热是各种工业炉、锅炉等高温热力设备中重要的换热方式。常见的问题有两类:固体表面间的辐射换热,取决于辐射角系数F和黑度ε值;固体表面间夹有气体的辐射换热,除F和ε值外,还与气体夹层厚度及其黑度有关。
固体辐射 实验表明,除了高度磨光的半球状金属表面的平均黑度为其法向黑度的 1.2倍外,其他工程材料的黑度值多可近似认为与方向无关,而只与物质种类、表面温度和表面状态有关。①表面光滑的导体的黑度很小,基本上与温度成正比;②介电质的黑度比导体黑度高得多,且与温度成反比;③大多数非金属在低温时的黑度都高于0.8;④钢铁的黑度随氧化程度和表面粗糙度的不同有很大的变化。
火焰辐射 火焰的辐射和吸收是在整个容积中进行的。火焰一般由双原子气体 (N2、O2、CO)、三原子气体(CO2、H2O、SO2)和悬浮固体粒子(炭黑、飞灰、焦炭粒子)所组成。其中N2和O2对热辐射是透明的,CO等的含量一般很低,因此火焰中具有辐射能力的成分主要是 H2O、CO2和各种悬浮的固体粒子。对于燃油,发光火焰辐射主要靠炭黑;对于煤粉,发光火焰辐射主要靠焦炭粒子,发光火焰辐射力一般比透明火焰大2~3倍。计算辐射换热通常要求得到火焰总黑度。它与平均有效射程和辐射减弱系数有关。在工程设计中,炉膛辐射换热计算常按下述模型进行:①假设炉内各物理量如火焰和固壁温度都均匀,计算结果也是某种平均值。这种模型比较粗糙,但计算简单;②考虑火焰和受热面是非等温的。常用的数学模型有赫太尔分区计算法、蒙特卡洛法和斯波尔丁通量法。前两种计算法立足于联合求解辐射换热的积分方程,并且假设流动和燃烧情况为已知;而通量法则是通过对过程的偏微分方程组作一定的简化,然后联立求解方程组得出速度场、浓度场、温度场和热流场