微分几何中,流形的余切丛是流形每点的切空间组成的向量丛。余切空间有一个标准的辛形式,从中可以一个余切丛的非退化的体积形式。因此,本身作为一个流形的余切丛总是可定向的。可以在余切丛上定义一组特殊的坐标系;这些被称为标准坐标系。因为余切丛可以视为辛流形,任何余切丛上的实函数总是可以解释为一个哈密尔顿函数;这样余切丛可以理解为哈密尔顿力学讨论的相空间。
笑话军事旅游美容女性百态母婴家电游戏互联网财经美女干货家饰健康探索资源娱乐学院 数码美食景区养生手机购车首饰美妆装修情感篇厨房科普动物植物编程百科知道汽车珠宝 健康评测品位娱乐居家情感星座服饰美体奢侈品美容达人亲子图库折扣生活美食花嫁风景 | 首页 |
微分几何中,流形的余切丛是流形每点的切空间组成的向量丛。余切空间有一个标准的辛形式,从中可以一个余切丛的非退化的体积形式。因此,本身作为一个流形的余切丛总是可定向的。可以在余切丛上定义一组特殊的坐标系;这些被称为标准坐标系。因为余切丛可以视为辛流形,任何余切丛上的实函数总是可以解释为一个哈密尔顿函数;这样余切丛可以理解为哈密尔顿力学讨论的相空间。