分享
 
 
 

几种算法

王朝other·作者佚名  2008-05-18
窄屏简体版  字體: |||超大  

排 序 算 法

一、插入排序(Insertion Sort)

1. 基本思想:

每次将一个待排序的数据元素,插入到前面已经排好序的数列中的适当位置,使数列依然有序;直到待排序数据元素全部插入完为止。

2. 排序过程:

【示例】:

[初始关键字] [49] 38 65 97 76 13 27 49

J=2(3 [38 49] 65 97 76 13 27 49

J=3(65) [38 49 65] 97 76 13 27 49

J=4(97) [38 49 65 97] 76 13 27 49

J=5(76) [38 49 65 76 97] 13 27 49

J=6(13) [13 38 49 65 76 97] 27 49

J=7(27) [13 27 38 49 65 76 97] 49

J=8(49) [13 27 38 49 49 65 76 97]

Procedure InsertSort(Var R : FileType);

//对R[1..N]按递增序进行插入排序, R[0]是监视哨//

Begin

for I := 2 To N Do //依次插入R[2],...,R[n]//

begin

R[0] := R[I]; J := I - 1;

While R[0] < R[J] Do //查找R[I]的插入位置//

begin

R[J+1] := R[J]; //将大于R[I]的元素后移//

J := J - 1

end

R[J + 1] := R[0] ; //插入R[I] //

end

End; //InsertSort //

二、选择排序

1. 基本思想:

每一趟从待排序的数据元素中选出最小(或最大)的一个元素,顺序放在已排好序的数列的最后,直到全部待排序的数据元素排完。

2. 排序过程:

【示例】:

初始关键字 [49 38 65 97 76 13 27 49]

第一趟排序后 13 [38 65 97 76 49 27 49]

第二趟排序后 13 27 [65 97 76 49 38 49]

第三趟排序后 13 27 38 [97 76 49 65 49]

第四趟排序后 13 27 38 49 [49 97 65 76]

第五趟排序后 13 27 38 49 49 [97 97 76]

第六趟排序后 13 27 38 49 49 76 [76 97]

第七趟排序后 13 27 38 49 49 76 76 [ 97]

最后排序结果 13 27 38 49 49 76 76 97

Procedure SelectSort(Var R : FileType); //对R[1..N]进行直接选择排序 //

Begin

for I := 1 To N - 1 Do //做N - 1趟选择排序//

begin

K := I;

For J := I + 1 To N Do //在当前无序区R[I..N]中选最小的元素R[K]//

begin

If R[J] < R[K] Then K := J

end;

If K <> I Then //交换R[I]和R[K] //

begin Temp := R[I]; R[I] := R[K]; R[K] := Temp; end;

end

End; //SelectSort //

三、冒泡排序(BubbleSort)

1. 基本思想:

两两比较待排序数据元素的大小,发现两个数据元素的次序相反时即进行交换,直到没有反序的数据元素为止。

2. 排序过程:

设想被排序的数组R[1..N]垂直竖立,将每个数据元素看作有重量的气泡,根据轻气泡不能在重气泡之下的原则,从下往上扫描数组R,凡扫描到违反本原则的轻气泡,就使其向上"漂浮",如此反复进行,直至最后任何两个气泡都是轻者在上,重者在下为止。

【示例】:

49 13 13 13 13 13 13 13

38 49 27 27 27 27 27 27

65 38 49 38 38 38 38 38

97 65 38 49 49 49 49 49

76 97 65 49 49 49 49 49

13 76 97 65 65 65 65 65

27 27 76 97 76 76 76 76

49 49 49 76 97 97 97 97

Procedure BubbleSort(Var R : FileType) //从下往上扫描的起泡排序//

Begin

For I := 1 To N-1 Do //做N-1趟排序//

begin

NoSwap := True; //置未排序的标志//

For J := N - 1 DownTo 1 Do //从底部往上扫描//

begin

If R[J+1]< R[J] Then //交换元素//

begin

Temp := R[J+1]; R[J+1 := R[J]; R[J] := Temp;

NoSwap := False

end;

end;

If NoSwap Then Return//本趟排序中未发生交换,则终止算法//

end

End; //BubbleSort//

四、快速排序(Quick Sort)

1. 基本思想:

在当前无序区R[1..H]中任取一个数据元素作为比较的"基准"(不妨记为X),用此基准将当前无序区划分为左右两个较小的无序区:R [1..I-1]和R[I+1..H],且左边的无序子区中数据元素均小于等于基准元素,右边的无序子区中数据元素均大于等于基准元素,而基准X则位于最终排序的位置上,即R[1..I-1]≤X.Key≤R[I+1..H](1≤I≤H),当R[1..I-1]和R[I+1..H]均非空时,分别对它们进行上述的划分过程,直至所有无序子区中的数据元素均已排序为止。

2. 排序过程:

【示例】:

初始关键字 [49 38 65 97 76 13 27 49]

第一次交换后 [27 38 65 97 76 13 49 49]

第二次交换后 [27 38 49 97 76 13 65 49]

J向左扫描,位置不变,第三次交换后 [27 38 13 97 76 49 65 49]

I向右扫描,位置不变,第四次交换后 [27 38 13 49 76 97 65 49]

J向左扫描 [27 38 13 49 76 97 65 49]

(一次划分过程)

初始关键字 [49 38 65 97 76 13 27 49]

一趟排序之后 [27 38 13] 49 [76 97 65 49]

二趟排序之后 [13] 27 [38] 49 [49 65]76 [97]

三趟排序之后 13 27 38 49 49 [65]76 97

最后的排序结果 13 27 38 49 49 65 76 97

各趟排序之后的状态

Procedure Parttion(Var R : FileType; L, H : Integer; Var I : Integer);

//对无序区R[1,H]做划分,I给以出本次划分后已被定位的基准元素的位置 //

Begin

I := 1; J := H; X := R[I] ;//初始化,X为基准//

Repeat

While (R[J] >= X) And (I < J) Do

begin

J := J - 1 //从右向左扫描,查找第1个小于 X的元素//

If I < J Then //已找到R[J] 〈X//

begin

R[I] := R[J]; //相当于交换R[I]和R[J]//

I := I + 1

end;

While (R[I] <= X) And (I < J) Do

I := I + 1 //从左向右扫描,查找第1个大于 X的元素///

end;

If I < J Then //已找到R[I] > X //

begin R[J] := R[I]; //相当于交换R[I]和R[J]//

J := J - 1

end

Until I = J;

R[I] := X //基准X已被最终定位//

End; //Parttion //

Procedure QuickSort(Var R :FileType; S,T: Integer); //对R[S..T]快速排序//

Begin

If S < T Then //当R[S..T]为空或只有一个元素是无需排序//

begin

Partion(R, S, T, I); //对R[S..T]做划分//

QuickSort(R, S, I-1);//递归处理左区间R[S,I-1]//

QuickSort(R, I+1,T);//递归处理右区间R[I+1..T] //

end;

End; //QuickSort//

五、堆排序(Heap Sort)

1. 基本思想:

堆排序是一树形选择排序,在排序过程中,将R[1..N]看成是一颗完全二叉树的顺序存储结构,利用完全二叉树中双亲结点和孩子结点之间的内在关系来选择最小的元素。

2. 堆的定义: N个元素的序列K1,K2,K3,...,Kn.称为堆,当且仅当该序列满足特性:

Ki≤K2i Ki ≤K2i+1(1≤ I≤ [N/2])

堆实质上是满足如下性质的完全二叉树:树中任一非叶子结点的关键字均大于等于其孩子结点的关键字。例如序列 10,15,56,25,30,70就是一个堆,它对应的完全二叉树如上图所示。这种堆中根结点(称为堆顶)的关键字最小,我们把它称为小根堆。反之,若完全二叉树中任一非叶子结点的关键字均大于等于其孩子的关键字,则称之为大根堆。

3. 排序过程:

堆排序正是利用小根堆(或大根堆)来选取当前无序区中关键字小(或最大)的记录实现排序的。我们不妨利用大根堆来排序。每一趟排序的基本操作是:将当前无序区调整为一个大根堆,选取关键字最大的堆顶记录,将它和无序区中的最后一个记录交换。这样,正好和直接选择排序相反,有序区是在原记录区的尾部形成并逐步向前扩大到整个记录区。

贪心算法

一、算法思想

贪心法的基本思路:

——从问题的某一个初始解出发逐步逼近给定的目标,以尽可能快的地求得更好的解。当达到某算法中的某一步不能再继续前进时,算法停止。

该算法存在问题:

1. 不能保证求得的最后解是最佳的;

2. 不能用来求最大或最小解问题;

3. 只能求满足某些约束条件的可行解的范围。

实现该算法的过程:

从问题的某一初始解出发;

while 能朝给定总目标前进一步 do

求出可行解的一个解元素;

由所有解元素组合成问题的一个可行解;

二、例题分析

1、[背包问题]有一个背包,背包容量是M=150。有7个物品,物品可以分割成任意大小。

要求尽可能让装入背包中的物品总价值最大,但不能超过总容量。

物品 A B C D E F G

重量 35 30 60 50 40 10 25

价值 10 40 30 50 35 40 30

分析:

目标函数: ∑pi最大

约束条件是装入的物品总重量不超过背包容量:∑wi<=M( M=150)

(1)根据贪心的策略,每次挑选价值最大的物品装入背包,得到的结果是否最优?

(2)每次挑选所占空间最小的物品装入是否能得到最优解?

(3)每次选取单位容量价值最大的物品,成为解本题的策略。

源程序

2、[单源最短路径]一个有向图G,它的每条边都有一个非负的权值c[i,j],“路径长度”就是所经过的所有边的权值之和。对于源点需要找出从源点出发到达其他所有结点的最短路径。

E.Dijkstra发明的贪婪算法可以解决最短路径问题。算法的主要思想是:分步求出最短路径,每一步产生一个到达新目的顶点的最短路径。下一步所能达到的目的顶点通过如下贪婪准则选取:在未产生最短路径的顶点中,选择路径最短的目的顶点。

设置顶点集合S并不断作贪心选择来扩充这个集合。当且仅当顶点到该顶点的最短路径已知时该顶点属于集合S。初始时S中只含源。

设u为G中一顶点,我们把从源点到u且中间仅经过集合S中的顶点的路称为从源到u特殊路径,并把这个特殊路径记录下来(例如程序中的dist[i,j])。

每次从V-S选出具有最短特殊路径长度的顶点u,将u添加到S中,同时对特殊路径长度进行必要的修改。一旦V=S,就得到从源到其他所有顶点的最短路径,也就得到问题的解 。

回溯法

一、回溯法:

回溯法是一个既带有系统性又带有跳跃性的的搜索算法。它在包含问题的所有解的解空间树中,按照深度优先的策略,从根结点出发搜索解空间树。算法搜索至解空间树的任一结点时,总是先判断该结点是否肯定不包含问题的解。如果肯定不包含,则跳过对以该结点为根的子树的系统搜索,逐层向其祖先结点回溯。否则,进入该子树,继续按深度优先的策略进行搜索。回溯法在用来求问题的所有解时,要回溯到根,且根结点的所有子树都已被搜索遍才结束。而回溯法在用来求问题的任一解时,只要搜索到问题的一个解就可以结束。这种以深度优先的方式系统地搜索问题的解的算法称为回溯法,它适用于解一些组合数较大的问题。

二、算法框架:

1、问题的解空间:应用回溯法解问题时,首先应明确定义问题的解空间。问题的解空间应到少包含问题的一个(最优)解。

2、回溯法的基本思想:确定了解空间的组织结构后,回溯法就从开始结点(根结点)出发,以深度优先的方式搜索整个解空间。这个开始结点就成为一个活结点,同时也成为当前的扩展结点。在当前的扩展结点处,搜索向纵深方向移至一个新结点。这个新结点就成为一个新的活结点,并成为当前扩展结点。如果在当前的扩展结点处不能再向纵深方向移动,则当前扩展结点就成为死结点。换句话说,这个结点不再是一个活结点。此时,应往回移动(回溯)至最近的一个活结点处,并使这个活结点成为当前的扩展结点。回溯法即以这种工作方式递归地在解空间中搜索,直至找到所要求的解或解空间中已没有活结点时为止。

运用回溯法解题通常包含以下三个步骤:

(1)针对所给问题,定义问题的解空间;

(2)确定易于搜索的解空间结构;

(3)以深度优先的方式搜索解空间,并且在搜索过程中用剪枝函数避免无效搜索;

3、递归回溯:由于回溯法是对解空间的深度优先搜索,因此在一般情况下可用递归函数来实现回溯法

分治策略

一、算法思想

任何一个可以用计算机求解的问题所需的计算时间都与其规模有关。问题规模越小,解题所需的计算时间往往也越少,从而也越容易计算。想解决一个较大的问题,有时是相当困难的。分治法的思想就是,将一个难以直接解决的大问题,分割成一些规模较小的相同问题,以便各个击破,分而治之。

分治的基本思想是将一个规模为n的问题分解为k个规模较小的子问题,这些子问题互相独立且与原问题相同。找出各部分的解,然后把各部分的解组合成整个问题的解。

1、解决算法实现的同时,需要估算算法实现所需时间。分治算法时间是这样确定的:

解决子问题所需的工作总量(由 子问题的个数、解决每个子问题的工作量 决定)

合并所有子问题所需的工作量

2、分治法是把任意大小问题尽可能地等分成两个子问题的递归算法

3、分治的具体过程:

begin

{开始}

if ①问题不可分 then ②返回问题解

else begin

③从原问题中划出含一半运算对象的子问题1;

④递归调用分治法过程,求出解1;

⑤从原问题中划出含另一半运算对象的子问题2;

⑥递归调用分治法过程,求出解2;

⑦将解1、解2组合成整修问题的解;

end;

end; {结束}

分支限界

一、分支限界法:

分支限界法类似于回溯法,也是一种在问题的解空间树T上搜索问题解的算法。但在一般情况下,分支限界法与回溯法的求解目标不同。回溯法的求解目标是找出T中满足约束条件的所有解,而分支限界法的求解目标则是找出满足约束条件的一个解,或是在满足约束条件的解中找出使用某一目标函数值达到极大或极小的解,即在某种意义下的最优解。

由于求解目标不同,导致分支限界法与回溯法在解空间树T上的搜索方式也不相同。回溯法以深度优先的方式搜索解空间树T,而分支限界法则以广度优先或以最小耗费优先的方式搜索解空间树T。分支限界法的搜索策略是:在扩展结点处,先生成其所有的儿子结点(分支),然后再从当前的活结点表中选择下一个扩展对点。为了有效地选择下一扩展结点,以加速搜索的进程,在每一活结点处,计算一个函数值(限界),并根据这些已计算出的函数值,从当前活结点表中选择一个最有利的结点作为扩展结点,使搜索朝着解空间树上有最优解的分支推进,以便尽快地找出一个最优解。

二、分支限界法的基本思想:

分支限界法常以广度优先或以最小耗费(最大效益)优先的方式搜索问题的解空间树。问题的解空间树是表示问题解空间的一棵有序树,常见的有 子集树和 排列树。在搜索问题的解空间树时,分支限界法与回溯法对当前扩展结点所使用的扩展方式不同。在分支限界法中,每一个活结点只有一次机会成为扩展结点。活结点一旦成为扩展结点,就一次性产生其所有儿子结点。在这些儿子结点中,那些导致不可行解或导致非最优解的儿子结点被舍弃,其余儿子结点被子加入活结点表中。此后,从活结点表中取下一结点成为当前扩展结点,并重复上述结点扩展过程。这个过程一直持续到找到所求的解或活结点表为空时为止。

三、选择下一扩展结点的不同方式:

从活结点表中选择下一扩展结点的不同方式导致不同的分支限界法。最常见的有以下两种方式:

1、队列式(FIFO)分支限界法:队列式分支限界法将活结点表组织成一个队列,并按队列的先进先出原则选取下一个结点为当前扩展结点。

2、优先队列式分支限界法:优先队列式分支限界法将活结点表组织成一个优先队列,交按优先队列中规定的结点优先级选取优先级最高的下一个结点成为当前扩展结点。

动态规划

一、动态规划的基本思想:

动态规划算法通常用于求解具有某种最优性质的问题。在这类问题中,可能会有许多可行解。每一个解都对应于一个值,我们希望找到具有最优值的解。动态规划算法与分治法类似,其基本思想也是将待求解问题分解成若干个子问题,先求解子问题,然后从这些子问题的解得到原问题的解。与分治法不同的是,适合于用动态规划求解的问题,经分解得到子问题往往不是互相独立的。若用分治法来解这类问题,则分解得到的子问题数目太多,有些子问题被重复计算了很多次。如果我们能够保存已解决的子问题的答案,而在需要时再找出已求得的答案,这样就可以避免大量的重复计算,节省时间。我们可以用一个表来记录所有已解的子问题的答案。不管该子问题以后是否被用到,只要它被计算过,就将其结果填入表中。这就是动态规划法的基本思路。具体的动态规划算法多种多样,但它们具有相同的填表格式。

二、设计动态规划法的步骤:

1、找出最优解的性质,并刻画其结构特征;

2、递归地定义最优值(写出动态规划方程);

3、以自底向上的方式计算出最优值;

4、根据计算最优值时得到的信息,构造一个最优解。

步骤1-3是动态规划算法的基本步骤。在只需要求出最优值的情形,步骤4可以省略,步骤3中记录的信息也较少;若需要求出问题的一个最优解,则必须执行步骤4,步骤3中记录的信息必须足够多以便构造最优解。

三、动态规划问题的特征:

动态规划算法的有效性依赖于问题本身所具有的两个重要性质:最优子结构性质和子问题重叠性质。

1、最优子结构:当问题的最优解包含了其子问题的最优解时,称该问题具有最优子结构性质。

2、重叠子问题:在用递归算法自顶向下解问题时,每次产生的子问题并不总是新问题,有些子问题被反复计算多次。动态规划算法正是利用了这种子问题的重叠性质,对每一个子问题只解一次,而后将其解保存在一个表格中,在以后尽可能多地利用这些子问题的解。

 
 
 
免责声明:本文为网络用户发布,其观点仅代表作者个人观点,与本站无关,本站仅提供信息存储服务。文中陈述内容未经本站证实,其真实性、完整性、及时性本站不作任何保证或承诺,请读者仅作参考,并请自行核实相关内容。
2023年上半年GDP全球前十五强
 百态   2023-10-24
美众议院议长启动对拜登的弹劾调查
 百态   2023-09-13
上海、济南、武汉等多地出现不明坠落物
 探索   2023-09-06
印度或要将国名改为“巴拉特”
 百态   2023-09-06
男子为女友送行,买票不登机被捕
 百态   2023-08-20
手机地震预警功能怎么开?
 干货   2023-08-06
女子4年卖2套房花700多万做美容:不但没变美脸,面部还出现变形
 百态   2023-08-04
住户一楼被水淹 还冲来8头猪
 百态   2023-07-31
女子体内爬出大量瓜子状活虫
 百态   2023-07-25
地球连续35年收到神秘规律性信号,网友:不要回答!
 探索   2023-07-21
全球镓价格本周大涨27%
 探索   2023-07-09
钱都流向了那些不缺钱的人,苦都留给了能吃苦的人
 探索   2023-07-02
倩女手游刀客魅者强控制(强混乱强眩晕强睡眠)和对应控制抗性的关系
 百态   2020-08-20
美国5月9日最新疫情:美国确诊人数突破131万
 百态   2020-05-09
荷兰政府宣布将集体辞职
 干货   2020-04-30
倩女幽魂手游师徒任务情义春秋猜成语答案逍遥观:鹏程万里
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案神机营:射石饮羽
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案昆仑山:拔刀相助
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案天工阁:鬼斧神工
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案丝路古道:单枪匹马
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案镇郊荒野:与虎谋皮
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案镇郊荒野:李代桃僵
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案镇郊荒野:指鹿为马
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案金陵:小鸟依人
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案金陵:千金买邻
 干货   2019-11-12
 
推荐阅读
 
 
 
>>返回首頁<<
 
靜靜地坐在廢墟上,四周的荒凉一望無際,忽然覺得,淒涼也很美
© 2005- 王朝網路 版權所有