分享
 
 
 

平板显示技术

平板显示技术  点此进入淘宝搜索页搜索
  特别声明:本站仅为商品信息简介,并不出售商品,您可点击文中链接进入淘宝网搜索页搜索该商品,有任何问题请与具体淘宝商家联系。
  參考價格: 点此进入淘宝搜索页搜索
  分類: 图书,工业技术,电子 通信,真空电子技术,

作者: 应根裕,胡文波,邱勇 等编著

出 版 社: 人民邮电出版社

出版时间: 2002-10-1字数: 794000版次: 1页数: 508印刷时间: 2002-10-1开本:印次:纸张: 胶版纸I S B N : 9787115103420包装: 平装编辑推荐

本书以高质量图像显示为主,兼顾别种显示技术,对历史上出现过的、但已经市场基础的显示器和显示技术一律不用过多的笔墨,对于发展前途光明的显示器件则从器件原理、工艺、结构、驱动电路以及应用方面作了全方位的介绍。

内容简介

本书重点介绍电视图像的平板显示技术及其在各个领域中的应用。全书共10章。第一章对7种已为市场认可的平板显示技术作了全方位的比较。第二章介绍了与图像显示有关的人眼生理学、光度学、色度学和电视传输的基本原理,为了比较,对阴极射线管显示技术也作了一定深度的描述。第三章至第九章分别对液晶显示、等离子体显示板、有机发光二极管显示、电致发光显示、 场发射显示、真空荧光管显示和发光二极管显示的原理、结构艺术、驱动电路和应用领域作了全面的介绍。第十章投影显示是作为显示大屏幕平板显示的有力竞争者而引入的。

作者简介

目录

第1章 平板显示技术的发展史及其特点

1.1 显示技术的发展史

1.2 显示器件的主要参量

1.3 平板显示技术的发展前景

1.3.1 平板显示器(FPD)与阴极射线管(CRT)

1.3.2 平板显示器件的现状及其发展方向

1.3.3 CRT与FPD的特性比较

参考资料

第2章 视觉和电视显示基本原理

2.1 人眼的生理特性

2.1.1 眼睛的构造及功能

2.1.2 锥体和杆体细胞

2.1.3 明视觉、暗视觉光谱光效率函数

2.1.4 暗适应和明适应

2.1.5 视敏度和细节视觉

2.1.6 临界闪烁频率

2.1.7 视觉阈限的量子理论与差别感觉阈限

2.2 光度学

2.2.1 光通量和发光强度

2.2.2 照度及距离平方反比定律

2.2.3 亮度及朗伯定律

2.3 色度学概要

2.3.1 颜色的基本特性及颜色混合

2.3.2 色觉理论

2.3.3 人眼对颜色的辨别能力和彩色视野

2.3.4 色度图

2.4 电视传像原理

2.4.1 图像的特点与组成

2.4.2 图像的顺序传送

2.4.3 电视扫描

2.4.4 同步和消隐

2.4.5 全电视信号

2.4.6 电视图像信号

2.4.7 按人眼视觉特点确定电视标准

2.4.8 彩色电视信号的传输

2.4.9 彩色电视的制式

2.4.10 高清晰度电视(HDTV)

2.5 平板显示器件的参照物--显像管简介

2.5.1 荧光屏

2.5.2 电子枪

2.5.3 偏转系统

2.5.4 玻璃外壳

2.5.5 荫罩式彩色显像管

2.5.6 其他类型彩色显像管

2.5.7 彩色显像管的前景

参考资料

第3章 液晶显示

3.1 液晶显示的发展与特点

3.1.1 液晶显示的发展过程

3.1.2 液晶显示的特点

3.1.3 液晶的分类

3.2 液晶的物理特性

3.2.1 有序参量

3.2.2 液晶的各向异性

3.2.3 液晶的连续体理论

3.2.4 外场作用下液晶分子排列转变的理论推导

3.3 液晶的光学特性

3.3.1 光的偏振和晶体光学简介

3.3.2 液晶的双折射特性和光学性质

3.4 液晶分子的沿面排列和主要参量

3.4.1 液晶显示器件基本结构

3.4.2 液晶分子的沿面排列

3.4.3 液晶显示器的主要性能参量

3.5 常见的液晶显示器件

3.5.1 液晶显示的三种方法

3.5.2 动态散射液晶显示器件(DSLCD)

3.5.3 扭曲向列液晶显示器件(TNLCD)

3.5.4 电控双折射液晶显示器件(ECBLCD)

3.5.5 宾主效应液晶显示器件(GHLCD)

3.5.6 相变液晶显示器件(PCLCD)

3.5.7 超扭曲向列液晶显示器件(STNLCD)

3.5.8 铁电液晶显示器件(FLCD)

3.5.9 固态液晶膜液晶显示器件(PDLCD)

3.5.10 多稳态液晶显示器件(MLCD)

3.5.11 液晶显示器件小结

3.6 液晶材料及其分子结构

3.6.1 对液晶材料的要求

3.6.2 热致液晶的分子结构

3.6.3 液晶分子的化学结构和液晶性质的关系

3.6.4 液晶分子结构和液晶物理性质的关系

3.6.5 实用液晶材料简介

3.6.6 有机分子部分概念和基团简介

3.7 液晶显示器件的驱动技术

3.7.1 液晶显示器件的电极连接

3.7.2 普通矩阵液晶显示器件的静态驱动技术

3.7.3 普通矩阵液晶显示器件的动态驱动技术

3.7.4 抑制交叉效应的措施

3.7.5 提高大容量液晶显示器件图像质量的方法

3.7.6 灰度显示法

3.7.7 动态驱动器原理

3.7.8 液晶显示控制器原理

3.8 有源矩阵液晶显示器件(AMLCD)

3.8.1 二端有源器件

3.8.2 三端有源器件

3.8.3 液晶电视

3.9 液晶显示器的主要材料及制造工艺

3.9.1 液晶显示器的主要材料

3.9.2 液晶显示器的主要工艺

3.9.3 液晶显示器的连接

3.9.4 背光照明系统

3.9.5 彩色滤色膜(CF)

3.10 液晶技术的新进展

3.10.1 LCD技术的发展过程

3.10.2 LCD宽视角化技术的进展

3.10.3 提高响应速度

3.10.4 反射式LCDs

3.10.5 低温多晶硅(LTPS)TFT LCDs

参考资料

第4章 等离子体显示器

4.1 概述

4.1.1 PDP的定义与分类

4.1.2 PDP的发展史

4.1.3 PDP的特点

4.2 气体放电的物理基础

4.2.1 气体放电的伏安特性

4.2.2 气体的击穿和巴邢定律

4.2.3 影响气体放电着火电压的因素

4.2.4 辉光放电的发光

4.2.5 气体放电延迟

4.3 交流等离子体显示板

4.3.1 基本结构

4.3.2 工作原理

4.3.3 壁电荷与壁电压

4.4 彩色AC PDP

4.4.1 实施途径

4.4.2 发光机理

4.4.3 结构特点

4.4.4 多灰度级显示的实现方法

4.5 彩色AC PDP的制造材料和工艺

4.5.1 彩色AC PDP的主要部件及其制作材料

4.5.2 光刻技术和丝网印刷技术简介

4.5.3 前基板的关键制造工艺

4.5.4 后基板的关键制造工艺

4.5.5 总装工艺

4.6 彩色AC PDP制造技术的发展状况

4.6.1 PDP结构的发展

4.6.2 PDP制造工艺的发展

4.6.3 新材料的应用

4.7 彩色AC PDP电路系统

4.7.1 三电极表面放电型彩色AC PDP的工作原理

4.7.2 驱动方法

4.7.3 驱动电路

4.8 显示动态图像时的干扰及解决措施

4.8.1 显示动态图像时的干扰及其形成机理

4.8.2 显示动态图像时的干扰的抑制措施

4.9 直流等离子体显示板

4.9.1 DC PDP的结构和工作原理

4.9.2 DC PDP的制作工艺

4.10 PDP的应用

4.10.1 PDP的应用领域

4.10.2 PDP产业的发展状况和市场展望

4.10.3 PDP技术的发展趋势

参考资料

第5章 有机电致发光显示

5.1 有机电致发光显示简介

5.2 有机电致发光基本理论问题

5.2.1 有机/聚合物半导体材料简介

5.2.2 有机/聚合物电致发光器件的结构及工作原理

5.2.3 有机薄膜的形态结构对器件性能的影响

5.2.4 表面与界面结构对器件性能的影响

5.3 有机电致发光材料

5.3.1 小分子有机电致发光材料

5.3.2 聚合物电致发光材料

5.3.3 三线态电致发光材料

5.4 有机发光二极管制备工艺

5.4.1 基片清洗

5.4.2 预处理

5.4.3 有机薄膜的制备

5.4.4 金属电极的制备

5.4.5 OLED阴极隔离柱和彩色化技术

5.4.6 OLED的稳定性和寿命

5.5 有机电致发光器件的驱动技术

5.5.1 静态驱动器原理

5.5.2 动态驱动器原理

5.5.3 带灰度控制的显示

5.6 有源驱动有机电致发光显示器

5.6.1 有源驱动与无源驱动的比较

5.6.2 低温多晶硅TFT技术

5.6.3 低温多晶硅TFTOLED的应用研究

5.7 新型OLED显示技术

5.7.1 柔性电致发光器件

5.7.2 硅基发光二极管(OLEDoS)微显示技术

5.7.3 透明OLED器件(transparent OLED)

5.7.4 表面发射OLED器件(Surface emitting OLED)

5.7.5 喷墨打印技术

5.7.6 丝网印刷制备OLED器件

参考资料

第6章 电致发光显示(ELD)

6.1 电致发光显示的分类与特点

6.2 粉末型交流电致发光板(ACPELP)

6.3 薄膜型交流电致发光板(ACTFELP)

6.4 电致发光用的发光材料与电介质材料

6.5 电致发光显示器件的驱动方式

6.6 薄膜电致发光板的应用

参考资料

第7章 场致发射平板显示器(FED)

7.1 场致发射

7.1.1 场发射显示原理

7.1.2 场发射理论

7.1.3 FowlerNordheim公式的精确性

7.2 微尖阵列场发射阴极(FEA)

7.2.1 金属微尖阵列场发射阴极

7.2.2 硅衬底微尖场发射阵列

7.3 微尖发射体的性能

7.3.1 微尖发射的特点

7.3.2 发射体几何参数的影响

7.3.3 发射体材料的影响

7.4 FED中的发射均匀性和稳定性问题

7.4.1 电阻限流原理

7.4.2 FEA限流电阻层结构

7.5 聚焦型FED

7.5.1 聚焦FEA结构

7.5.2 聚焦FEA工艺

7.6 支撑技术

7.6.1 支撑结构的必要性

7.6.2 玻板受力分析

7.6.3 支撑墙体受力分析

7.7 FED中真空度的维持

7.7.1 FEA发射性能的降低机制

7.7.2 FED中消气剂的使用

7.8 FED中的荧光粉问题

7.9 新一代场发射显示器件

7.9.1 发展新型FED的必要性

7.9.2 纳米管场发射显示器件

7.9.3 弹道电子表面发射显示

7.9.4 表面传导发射显示(SED)

7.9.5 MIM结构的FED

7.9.6 金属-绝缘层-半导体-金属(MISM)FED

参考资料

第8章 真空荧光显示(VFD)

8.1 VFD的结构与工作原理

8.2 VFD用的荧光粉

8.3 VFD的电学与光学特性

8.4 VFD中的特殊问题

8.5 VFD的驱动方式

8.6 VFD的应用

参考资料

第9章 发光二极管(LED)显示

9.1 概述

9.2 有关半导体及pn结注入发光的基本知识

9.2.1 有关能带的基本常识

9.2.2 有关pn结的基本知识

9.2.3 复合理论

9.3 pn结注入发光

9.4 发光二极管的发光效率

9.5 发光二极管制造中的主要工艺技术

9.5.1 外延生长技术

9.5.2 扩散技术

9.5.3 制备电极

9.6 发光二极管材料

9.7 超高亮度和蓝光LED的结构

9.7.1 超高亮度LED的结构

9.7.2 蓝光LED结构

9.8 发光二极管的特性

9.9 发光二极管应用领域的拓展

9.10 LED的应用及相关电路

9.10.1 信息刷新原理

9.10.2 灰度扫描的实现

9.10.3 扫描控制电路总体说明

9.10.4 彩色显示屏的γ校正

9.10.5 显示屏均匀性的改造

9.10.6 户外LED显示屏开关电源的设计

参考资料

第10章 投影显示

10.1 投影机的分类

10.2 投影管式投影机

10.3 液晶投影显示

10.4 数字光路处理器投影机

参考资料

媒体评论

 
 
免责声明:本文为网络用户发布,其观点仅代表作者个人观点,与本站无关,本站仅提供信息存储服务。文中陈述内容未经本站证实,其真实性、完整性、及时性本站不作任何保证或承诺,请读者仅作参考,并请自行核实相关内容。
2023年上半年GDP全球前十五强
 百态   2023-10-24
美众议院议长启动对拜登的弹劾调查
 百态   2023-09-13
上海、济南、武汉等多地出现不明坠落物
 探索   2023-09-06
印度或要将国名改为“巴拉特”
 百态   2023-09-06
男子为女友送行,买票不登机被捕
 百态   2023-08-20
手机地震预警功能怎么开?
 干货   2023-08-06
女子4年卖2套房花700多万做美容:不但没变美脸,面部还出现变形
 百态   2023-08-04
住户一楼被水淹 还冲来8头猪
 百态   2023-07-31
女子体内爬出大量瓜子状活虫
 百态   2023-07-25
地球连续35年收到神秘规律性信号,网友:不要回答!
 探索   2023-07-21
全球镓价格本周大涨27%
 探索   2023-07-09
钱都流向了那些不缺钱的人,苦都留给了能吃苦的人
 探索   2023-07-02
倩女手游刀客魅者强控制(强混乱强眩晕强睡眠)和对应控制抗性的关系
 百态   2020-08-20
美国5月9日最新疫情:美国确诊人数突破131万
 百态   2020-05-09
荷兰政府宣布将集体辞职
 干货   2020-04-30
倩女幽魂手游师徒任务情义春秋猜成语答案逍遥观:鹏程万里
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案神机营:射石饮羽
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案昆仑山:拔刀相助
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案天工阁:鬼斧神工
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案丝路古道:单枪匹马
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案镇郊荒野:与虎谋皮
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案镇郊荒野:李代桃僵
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案镇郊荒野:指鹿为马
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案金陵:小鸟依人
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案金陵:千金买邻
 干货   2019-11-12
 
推荐阅读
 
 
>>返回首頁<<
 
靜靜地坐在廢墟上,四周的荒凉一望無際,忽然覺得,淒涼也很美
© 2005- 王朝網路 版權所有