分享
 
 
 

无线与移动通信中的信号处理技术第1册:信道估计与均衡(英文版)

无线与移动通信中的信号处理技术第1册:信道估计与均衡(英文版)  点此进入淘宝搜索页搜索
  特别声明:本站仅为商品信息简介,并不出售商品,您可点击文中链接进入淘宝网搜索页搜索该商品,有任何问题请与具体淘宝商家联系。
  參考價格: 点此进入淘宝搜索页搜索
  分類: 图书,工业技术,电子 通信,无线通信,

作者: [美]贾纳科斯 编著

出 版 社: 人民邮电出版社

出版时间: 2002-11-1字数:版次: 1页数: 434印刷时间: 2002-11-1开本:印次:纸张: 胶版纸I S B N : 9787115108289包装: 平装编辑推荐

内容简介

《无线与移动通信中的信号处理新技术》丛书,介绍了近年来无线与移动通信中使用的信号处理(SP)工具的最新的重要进展,以及世界范围内该领域的领先者的贡献。本书是两本书中的第1册。本丛书的内容涵盖了范围广泛的技术和方法论,包括噪声与于扰消除、调制解调器设计、移动互联网业务、下一代音频/视频广播、蜂窝移动电话和无线多媒体网络等。

本书(第1册)重点阐述单用户点对点链路的信道识别与均衡的关键技术。由于信息承载信号的在衰落介质中传播的,所以现代的均衡器必须充分考虑移动无线信道的可变性,减小符号间于扰和同(共)信道于扰,并抑制在单个或多个传感器的接收机中的噪声。本书介绍了最近提出的带宽节省(半)盲算法与性能分析,以及线性预编码技术,这些技术利用发射冗余使基于训练序列的系统获得明显的改善。本书内容包括:

* 盲识别与反卷积的子空间方法

* 有色信号驱动的信道的盲识别与均衡

* 最优子空间方法;多信道均衡的线性预测算法

* FIR多信道估计的半盲方法

* 盲判决反馈均衡等

本书还介绍了在世界范围内各种期刊中的研究成果,全面汇集了用于优化单用户点点链路的先进信号处理技术。本书对于通信工程师、研究人员、管理人员、通信系统读者论坛人员和参与最新通信系统设计或构造的同行将是极有价值的。

作者简介

目录

PREFACE xi

1 CHANNEL ESTIMATION AND EQUALIZATION USING HIGHER-ORDER STATISTICS 1

1.1 Introduction 1

1.2 Single-User Systems :Baud Rate Sampling 4

1.2.1 Cumulant Matching 4

1.2.2 Inverse Filter Criteria 8

1.2.3 Equation Error Formulations 8

1.2.4 Simulation Examples 8

1.3 Single-user Systems :Fractional Sampling 12

1.3.1 Cumulant Matching 13

1.3.2 Simulation Example 20

1.4 Multi-user Systems 24

1.4.1 Inverse Filter Criteria 26

1.4.2 Cumulant Matching 28

1.4.3 Simulation Examples 31

1.5 Concluding Remarks 35

Bibliography 37

2 PERFORMANCE BOUNDS FOR BLIND CHANNEL ESTIMATION 41

2.1 Introduction 42

2.2 Problem Statement and Preliminaries 42

2.2.1 The Blind Channel Identification Problem 42

2.2.2 Ambiguity Elimination 44

2.2.3 The Unconstrained FIM 46

2.2.4 Achievability of the CRB 47

2.3 CRB for Constrained Estimates 48

2.4 CRB for Estimates of Invariants 49

2.5 CRB for Projection Errors 52

2.6 Numerical Examples 53

2.7 Concluding Remarks 58

Appendix 2.A Proof of Proposition 2 59

Bibliography 61

3 SUBSPACE METHOD FOR BLIND IDENTIFICATION AND DECONVOLUTION 63

3.1 Introduction 63

3.2 Subspace Identification of SIMO Channels 65

3.2.1 Practical Considerations 69

3.2.2 Simplifications in the Two-Channel Case 70

3.3 Subspace Identification of MIMO Channels 71

3.3.1 Rational Spaces and Polynomial Bases 72

3.3.2 The Structure of the Left Nullspace of a Sylvester Matrix 76

3.3.3 The Subspace Method 78

3.3.4 Advanced Results 82

3.4 Applications to the Blind Channel Estimation of CDMA Systems 84

3.4.1 Model Structure 84

3.4.2 The Structured Subspace Method: The Uplink Case 88

3.4.3 The Structured Subspace Method: The Downlink Case 89

3.5 Undermodeled Channel Identification 92

3.5.1 Example: Identifying a Significant Part of a Channel 99

3.5.2 Determining the Effective Impulse Response Length 100

Appendix 3.A 102

3.A.1 Proof of Theorem 1 103

3.A.2 Proof of Proposition 3 104

3.A.3 Proof of Theorem 4 105

3.A.4 Proof of Proposition 5 106

Bibliography 108

4 BLIND IDENTIFICATION AND EQUALIZATION OF CHANNELS DRIVEN BY COLORED SIGNALS 113

4.1 Introduction 114

4.2 FIR MIMO Channel 115

4.2.1 Original Model 115

4.2.2 Slide-Window Formulation 115

4.2.3 Noise Variance and Number of Input Signals 116

4.3 Identifiability Using SOS 117

4.3.1 Identifiability Conditions 117

4.3.2 Some Facts of Polynomial Matrices 118

4.3.3 Proof of the Conditions 120

4.3.4 When the Input is White 121

4.4 Blind Identification via Decorrelation 121

4.4.1 The Principle of the BID 121

4.4.2 Constructing the Decorrelators 126

4.4.3 Removing the GCD of Polynomials 128

4.4.4 Identification of the SIMO Channels 130

4.5 Final Remarks 135

Bibliography 135

5 OPTIMUM SUBSPACE METHODS 139

5.1 Introduction 139

5.2 Data Model and Notations 140

5.2.1 Scalar Valued Communication Systems 140

5.2.2 Multi Channel Communication Systems 141

5.2.3 A Stacked System Model 143

5.2.4 Correlation Matrices 145

5.2.5 Statistical Assumptions 147

5.3 Subspace Ideas and Notations 148

5.3.1 Basic Notations 149

5.4 Parameterizations 151

5.4.1 A Noise Subspace Parameterization 151

5.4.2 Selection Matrices 153

5.5 Estimation Procedure 154

5.5.1 The Signal Subspace Parameterization 155

5.5.2 The Noise Subspace Parameterization 156

5.6 Statistical Analysis 156

5.6.1 The Residual Covariance Matrices 157

5.6.2 The Parameter Covariance Matrices 159

5.7 Relation to Direction Estimation 161

5.8 Further Results for the Noise Subspace Parameterization 162

5.8.1 The Results 163

5.8.2 The Approach 163

5.9 Simulation Examples 164

5.10 Conclusions 171

Appendix 5.A 173

Bibliography 174

6 LINEAR PREDICTIVE ALGORITHMS FOR BLIND MULTICHANNEL IDENTIFICATION 179

6.1 Introduction 179

6.2 Channel Identification Based on Second Order Statistics: Problem Formulation 181

6.3 Linear Prediction Algorithm for Channel Identification 183

6.4 Outer-Product Decomposition Algorithm 185

6.5 Multi-step Linear Prediction 188

6.6 Channel Estimation by Linear Smoothing (Not Predicting) 189

6.7 Channel Estimation by Constrained Output Energy Minimization 192

6.8 Discussion 195

6.8.1 Channel Conditions 195

6.8.2 Data Conditions 196

6.8.3 Noise Effect 196

6.9 Simulation Results 197

6.10 Summary 198

Bibliography 207

7 SEMI-BLIND METHODS FOR FIR MULTICHANNEL ESTIMATION 211

7.1 Introduction 212

7.1.1 Training Sequence Based Methods and Blind Methods 212

7.1.2 Semi-Blind Principle 213

7.2 Problem Formulation 214

7.3 Classification lf Semi-Blind Methods 217

7.4 Identifiability Conditions for Semi-Blind Channel Estimation 218

7.4.1 Identifiability Definition 218

7.4.2 TS Based Channel Identifiability 219

7.4.3 Identifiability in the Deterministic Model 219

7.4.4 Identifiability in the Gaussian Model 222

7.5 Performance Measure: Cramer-Rao Bounds 224

7.6 Performance Optimization Issues 226

7.7 Optimal Semi-Blind Methods 227

7.8 Blind DML 229

7.8.1 Denoised IQML (DIQML) 230

7.8.2 Pseudo Quadratic ML (PQML) 231

7.9 Three Suboptimal DML Based Semi-Blind Criteria 232

7.9.1 Split of the Data 232

7.9.2 Least Squares-DML 232

7.9.3 Alternating Quadratic DML (AQ-DML) 233

7.9.4 Weighted-Least-Squares-PQML (WLS-PQML) 235

7.9.5 Wimulations 236

7.10 Semi-Blind Criteria as a Combination of a Blind and a TS Based Criteria 236

7.10.1 Semi-Blind SRM Example 237

7.10.2 Subspace Fitting Example 239

7.11 Performance of Semi-Blind Quadratic Criteria 242

7.11.1 MU and MK infinite 243

7.11.2 MU infinite, MK finite 243

7.11.3 Optimally Weighted Quadratic Criteria 247

7.12 Gaussian Methods 247

7.13 Conclusion 249

Bibliography 250

8 A GEOMETRICAL APPROACH TO BLIND SIGNAL ESTIMATION 255

8.1 Introduction 256

8.2 Design Criteria for Blind Estimators 258

8.2.1 The Constant Modulus Receiver 260

8.2.2 The Shalvi-Weinstein Receiver 261

8.3 The Signal Space Property and Equivalent Cost Functions 263

8.3.1 The Signal Space Property of CM Receivers 263

8.3.2 The Signal Space Property of SW Receivers 264

8.3.3 Equivalent Cost Functions 265

8.4 Geometrical Analysis of SW Receivers: Global Characterization 266

8.4.1 The Noiseless Case 268

8.4.2 The Noisy Case 270

8.4.3 Domains of Attraction of SW Receivers 275

8.5 Geometrical Analysis of SW Receivers: Local Characterizations 277

8.5.1 Local Characterization 277

8.5.2 MSE of CM Receivers 281

8.6 Conclusion and Bibliography Notes 282

8.6.1 Bibliography Notes 283

Appendix 8.A Proof of Theorem 5 285

Bibliography 288

9 LINEAR PRECODING FOR ESTIMATION AND EQUALIZATION OF FREQUENCY-SELECTIVE CHANNELS 291

9.1 System Model 293

9.2 Unifying Filterbank Precoders 296

9.3 FIR-ZF Equalizers 301

9.4 Jointly Optimal Precoder and Decoder Design 306

9.4.1 Zero-order Model 306

9.4.2 MMSE/ZF Coding 308

9.4.3 MMSE Solution wit Constrained Average Power 309

9.4.4 Constrained Power Maximum Information Rate Design 311

9.4.5 Comparison Between Optimal Designs 313

9.4.6 Asymptotic Performance 317

9.4.7 Numerical Examples 318

9.5 Blind Symbol Recovery 320

9.5.1 Blind Channel Estimation 322

9.5.2 Comparison with Other Blind Techniques 324

9.5.3 Statistical Efficiency 330

9.6 Conclusion 332

Bibliography 332

10. BLIND CHANNEL IDENTIFIABILITY WITH AN ARBITRARY LINEAR PRECODR 339

10.1 Introduction 339

10.2 Basic Theory of Polynomial Equations 344

10.2.1 Definition of Generic 344

10.2.2 General Properties of Polynomial Maps 344

10.2.3 Generic and Non-Generic Points 346

10.2.4 Invertibility Criteria 347

10.3 Inherent Scale Ambiguity 348

10.4 Weak Identifiability and the CRB 348

10.5 Arbitrary Linear Precoders 349

10.6 Zero Prefix Precoders 351

10.7 Geometric Interpretation of Precoding 354

10.7.1 Linear Precoders 354

10.7.2 Zero Prefix Precoders 355

10.8 Filter Banks 355

10.8.1 Algebraic Analysis of Filter Banks 357

10.8.2 Spectral Analysis of Filter Banks 358

10.9 Ambiguity Resistant Precoders 360

10.10 Symbolic Methods 361

10.11 Conclusion 362

Bibliography 363

11 CURRENT APPROACHES TO BLIND DECISION FEEDBACK EQUALIZATION 367

11.1 Introduction 367

11.2 Notation 370

11.3 Data Model 373

11.4 Wiener Filtering 374

11.4.1 Unconstrained Length MMSE Receivers 375

11.4.2 Constrained Length MMSE Receivers 377

11.4.3 Example: Constrained Versus Unconstrained Length Wiener Receivers 379

11.5 Blind Tracking Algorithms 380

11.5.1 DD-DFE 381

11.5.2 CMA-DFE 388

11.5.3 Algorithmic and Structural Modifications 389

11.5.4 Summary of Blind Tracking Algorithms 391

11.6 DFE Initialization Strategies 391

11.6.1 Generic Strategy 391

11.6.2 Multistage Equalization 395

11.6.3 CMA-IIR Initialization 397

11.6.4 Local Stability of Adaptive IIR Equalizers 398

11.6.5 Summary of Blind Initialization Strategies 399

11.7 Conclusion 400

Appendix 11.A Spectral Factorization 402

Appendix 11.B CL-MMSE-DFE 403

Appendix 11.C DD-DFE Local Convergence 405

Appendix 11.D Adaptive IIR Algorithm Updates 406

Appendix 11.E CMA-AR Local Stability 409

Bibliography 411

媒体评论

 
 
免责声明:本文为网络用户发布,其观点仅代表作者个人观点,与本站无关,本站仅提供信息存储服务。文中陈述内容未经本站证实,其真实性、完整性、及时性本站不作任何保证或承诺,请读者仅作参考,并请自行核实相关内容。
2023年上半年GDP全球前十五强
 百态   2023-10-24
美众议院议长启动对拜登的弹劾调查
 百态   2023-09-13
上海、济南、武汉等多地出现不明坠落物
 探索   2023-09-06
印度或要将国名改为“巴拉特”
 百态   2023-09-06
男子为女友送行,买票不登机被捕
 百态   2023-08-20
手机地震预警功能怎么开?
 干货   2023-08-06
女子4年卖2套房花700多万做美容:不但没变美脸,面部还出现变形
 百态   2023-08-04
住户一楼被水淹 还冲来8头猪
 百态   2023-07-31
女子体内爬出大量瓜子状活虫
 百态   2023-07-25
地球连续35年收到神秘规律性信号,网友:不要回答!
 探索   2023-07-21
全球镓价格本周大涨27%
 探索   2023-07-09
钱都流向了那些不缺钱的人,苦都留给了能吃苦的人
 探索   2023-07-02
倩女手游刀客魅者强控制(强混乱强眩晕强睡眠)和对应控制抗性的关系
 百态   2020-08-20
美国5月9日最新疫情:美国确诊人数突破131万
 百态   2020-05-09
荷兰政府宣布将集体辞职
 干货   2020-04-30
倩女幽魂手游师徒任务情义春秋猜成语答案逍遥观:鹏程万里
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案神机营:射石饮羽
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案昆仑山:拔刀相助
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案天工阁:鬼斧神工
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案丝路古道:单枪匹马
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案镇郊荒野:与虎谋皮
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案镇郊荒野:李代桃僵
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案镇郊荒野:指鹿为马
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案金陵:小鸟依人
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案金陵:千金买邻
 干货   2019-11-12
 
推荐阅读
 
 
>>返回首頁<<
 
 
靜靜地坐在廢墟上,四周的荒凉一望無際,忽然覺得,淒涼也很美
© 2005- 王朝網路 版權所有