第3版-高等数学习题详解(与同济五版教材配套)上下册合订本
分類: 图书,自然科学,数学,高等数学,
作者: 彭辉 等主编
出 版 社: 中国社会出版社
出版时间: 2007-8-1字数: 500000版次: 3页数: 652印刷时间: 2007/08/01开本:印次:纸张: 胶版纸I S B N : 9787508707204包装: 平装内容简介
本书共分为十二章,每章又分若干节,章节的划分和标题与《教材》一致。在本书中每节包括三大部分内容:
一、知识要点与考点:用表格形式简要对每节涉及的基本概念、基本定理和公式进行了系统梳理,并提出理解与应用基本概念、定理、公式时需注意的问题,特别指出了各类考试中经常考查的重要知识点;
二、习题详解:对《教材》里每节习题全部做了解答,部分有代表性的习题在解答过程中,有“思路探索”帮助读者尽快找到解决问题的思路和方法;有“方法点击”:帮助读者找到解决问题的关键、技巧与规律;有的习题还给出了一题多解,以培养读者的分析能力和发散思维能力,另外本书还用“警示语”的形式对解题要点、技巧和易错的地方做了简短警示。
为了对每章所学过的知识进行复习巩固,当每章最后一节编写完成后,另外增加四部分内容:
一、本章知识结构及内容小节:本书用结构图形式将本章知识点有机联系起来,组成网络结构。便于学生从总体上更加系统掌握本章知识体系和核心内容;
二、教材总复习题全解:对每道题都给出了解答,有的题还给出了“思路探索”和“方法点击”,以便帮助读者尽快找到解决问题的思路和方法;找到解决问题的关键、技巧与规律;
三、历年考研真题解析:从历年考研统考试题中精选出典型题目,并进行详细解答和分析。在本书的最后还附有2004年、2005年全国研究生入学考试试题真及解答;
四、同步自测题及解答:精选有代表性、测试价值高的题目,以此检测学习效果,提高应试水平。
目录
前言
第一章 函数与极限
第一节 映射与函数
第二节 数列的极限
第三节 函数的极限
第四节 无穷小与无穷大
第五节 极限运算原则
第六节 极限存在准则两个重要极限
第七节 无穷小的比较
第八节 函数的连续性与间断点
第九节 连续函数的运算与初等函数的连续性
第十节 闭区间上连续函数的性质
本章知识结构及内容小结
历年考研真题解析
同步自测题及参考答案
第二章 导数与微分
第一节 导数的概念
第二节 函数的求导法则
第三节 高阶导数
第四节 隐函数及由参数方程所确定的耿直数的导数 相关变化率
第五节 函数的微分
本章知识结构及内容小结
历年考研真题解析
同步自测题及参考答案
第三章 微分中值定理与导数的应用
第一节 微分中值定理
第二节 洛必达法则
第三节 泰勒公式
第四节 函数的单调性与曲线的凹凸性
第五节 函数的极值与最大值最小值
第六节 函数图形的描绘
第七节 曲率
第八节 方程的近似解
本章知识结构及内容小结
历年考研真题解析
同步自测题及参考答案
第四章 不定积分
第一节 不定积分的概念与性质
第二节 换元积分法
第三节 分部积分法
第四节 有理函数的积分
第五节 积分表的使用
本章知识结构及内容小结
历年考研真题解析
同步自测题及参考答案
第五章 定积分
第一节 定积分的概念与性质
第二节 微积分基本公式
第三节 定积分的换元法和分部积分法
第四节 反常积分
第五节 反常积分的审敛法
本章知识结构及内容小结
历年考研真题解析
同步自测题及参考答案
第六章 定积分的应用
第一节 定积分的元素法
第二节 定积分在几何学上的应用
第三节 定积分的在物理学上的应用
本章知识结构及内容小结
历年考研真题解析
同步自测题及参考答案
第七章 空间解析几何与向量代数
第一节 向量及其线性运算
第二节 数量积 向量积 混合积
第三节 曲面及其方程
……
第八章 多元函数微分法及其应用
第九章 重积分
第十章 曲线积分与曲面积分
第十一章 无穷级数
第十二章 微分方程
2007年全国硕士研究生入学统一考试数学一试题
2007年全国硕士研究生入学统一考试数学二试题