语言表达与运用
分類: 图书,社会科学,语言文字 ,
作者: 王慧萍主编
出 版 社: 机械工业出版社
出版时间: 2007-9-1字数: 171000版次: 1页数: 206印刷时间: 2007/09/01开本:印次:纸张: 胶版纸I S B N : 9787111220718包装: 平装内容简介
本书从中等职业学生的实际水平出发,为满足学生就业和发展的需要,以说、写为主,以听、读为辅;强化实训,兼顾基础。本书共有10个单元,分别是朗读、介绍、复述、解说、评述、演说、辩论、面试、主持和采访。每个单元包括单元达标标准、单元知识、课文及其实践与思考。单元达标标准分为初级、中级、高级三个标准,是本单元学习的目标。单元知识是本单元学习的主要内容,侧重于方法的介绍。课文由若干篇幅适中、针对性强和时代感强的例文组成,便于学生模仿训练。实践与思考包括对课文内容的理解、语文基础训练和口语训练。此外,本书还有:汉语拼音方案、朗读符号表、赛场辩论的四种模式及班级辩论会的组织、面试中的礼仪及着装要求等四个附录,主要为补充基础知识和便于组织学生活动之用。
本书既可作为中等职业学校学生的语文教材,亦可作为中学生或社会人员的参考读物。
作者简介
Lars Hormander,20世纪瑞典最伟大的数学家之一,数学界少有的沃尔夫奖(1988)和菲尔兹奖(1962)双奖得主。他于1955年获博士学位,师从大数学家Marcel Riesz。他对线性偏微分方程的现代理论做出了杰出贡献,1987-1990年间他曾任国际数学联盟副主席。
目录
CHAPTER Ⅰ. ANALYTIC FUNCTIONS OF ONE COMPLEX VARIABLE
Summary
1.2. Preliminaries
1.2. Cauchy's integral formula and its applications
1.3. The Runge approximation theorem
1.4. The Mittag-Leffler theorem
1.5. The Weierstrass theorem
1.6. Subharmonic functions
Notes
CHAPTER Ⅱ. ELEMENTARY PROPERTIES OF FUNCTIONS OF SEVERAL COMPLEX VARIABLES
Summary
2.1. Preliminaries
2.2. Applications of Cauchy's integral formula in polydiscs
2.3. The inhomogeneous Cauchy-Riemann equations in a polydisc
2.4. Power series and Reinhardt domains
2.5. Domains of holomorphy
2.6. Pseudoconvexity and plurisubharmonicity
2.7. Runge domains
Notes
CHAPTER Ⅲ. APPLICATIONS TO COMMUTATIVE BANACH ALGEBRAS
Summary
3.1. Preliminaries
3.2. Analytic functions of elements in a Banach algebra
Notes
CHAPTER Ⅳ. L2 ESTIMATES AND EXISTENCE THEOREMS FOR THE e OPERATOR
Summary
4.1. Preliminaries
4.2. Existence theorems in pseudoconvex domains
4.3. Approximation theorems
4.4. Existence theorems in L2 spaces
4.5. Analytic functionals
Notes
CHAPTER Ⅴ. STEIN MANIFOLDS
Summary
5.1. Definitions
5.2. L2 estimates and existence theorems for the e operator
5.3. Embedding of Stein manifolds.
5.4. Envelopes of holomorphy.
5.5. The Cousin problems on a Stein manifold
5.6. Existence and approximation theorems for sections of an analytic vector bundle
5.7. Almost complex manifolds
Notes
CHAPTER Ⅵ. LOCAL PROPERTIES OF ANALYTIC FUNCTIONS
Summary
6.1. The Weierstrass preparation theorem
6.2. Factorization in the ring ,4o of germs of analytic functions
6.3. Finitely generated ,4o-modules
6.4. The Oka theorem
6.5. Analytic sets
Notes
CHAPTER Ⅶ. COHERENT ANALYTIC SHEAVES ON STEIN MANIFOLDS
Summary
7.1. Definition of sheaves
7.2. Existence of global sections of a coherent analytic sheaf
7.3. Cohomology groups with values in a sheaf
7.4. The cohomology groups of a Stein manifold with coefficients in a coherent analytic sheaf
7.5. The de Rham theorem
7.6. Cohomology with bounds and constant coefficient difterential equations
7.7. Quotients of AK by submodules, and the Ehrenpreis fundamental principle
Notes
BIBLIOGRAPHY
INDEX