分享
 
 
 

物理学家的微分几何DIFFERENTIAL GEOMETRY FOR PHYSICISTS

物理学家的微分几何DIFFERENTIAL GEOMETRY FOR PHYSICISTS  点此进入淘宝搜索页搜索
  特别声明:本站仅为商品信息简介,并不出售商品,您可点击文中链接进入淘宝网搜索页搜索该商品,有任何问题请与具体淘宝商家联系。
  參考價格: 点此进入淘宝搜索页搜索
  分類: 图书,进口原版书,科学与技术 Science & Techology ,

作者: Bo-Yuan Hou著

出 版 社: 东南大学出版社

出版时间: 1997-12-1字数:版次: 1页数: 546印刷时间: 1997/04/01开本:印次: 1纸张: 胶版纸I S B N : 9789810231057包装: 精装内容简介

This book is divided into 14 chapters, with 18 appendices as introductionto prerequisite topological and algebraic knowledge, etc. The first sevenchapters focus on local analysis. This can be used as a fundamental textbookfor graduate students of theoretical physics. Chapters 8-10 discuss geometryon fibre bundles, which facilitates further reference for researchers. The lastfour chapters deal with the Atiyah-Singer index theorem, its generalizationand its application, quantum anomaly, cohomology field theory and noncom-mutative geometry, giving the reader a glimpse of the frontier of currentresearch in theoretical physics.

目录

Preface

1 Differentiable Manifolds and Differential Forms

1.1 Manifold

1.2 Differentiable manifold

1.3 Tangent space and tangent vector field

1.4 Cotangent vector field

1.5 Tensor product, exterior product and various higher order tensor fields

1.6 Exterior differentiation

1.7 Orientation and Stokes formula

Notations and formulae

Exercises

2 Transformation of Manifold, Manifolds with Given Vector Fields and Lie Group Manifold

2.1 Continuous mapping between manifolds and its induced mapping

2.2 Integral submanifold and Frobenius theorem

2.3 Integrability of differential equations and Frobenius theorem in terms of differential forms

2.4 The flow of vector fields, one parameter local Lie transformation groups and Lie derivative

2.5 Lie group, Lie algebra and exponential map

2.6 Lie transformation groups, orbit and the space of orbits

Notations and Formulae

Exercises

3 Affine Connection and Covariant Differentiation

3.1 Moving frame approach to tensor field

3.2 Affine connection and covariant differentiation

3.3 The curvature 2-form and the curvature tensor

3.4 Torsion tensor

3.5 Covariant exterior differential

3.6 Holonomy group of connections

3.7 Berry phase, holonomy in physical system

Notations and Formulea

Exercises

4 Riemannian Manifold

4.1 Metric tensor field, Hodge star and codifferentiation

4.2 Riemannian connection

4.3 Riemannian curvature

4.4 Bianchi identity and Einstein field equation of gravity

4.5 Isometry, conformal transformation and constant curvature space

4.6 Orthogonal frame field and spin connection

4.7 Surfaces and curves in 3-dimensional Euclidean space

4.8 The computation of Riemannian curvature tensor

4.9 Pseudosphere and Backlund transformation

Notations and Formulae

Exercises

5 Sympleetic Manifold and Contact Manifold

5.1 Symplectic manifold

5.2 Special submanifolds of symplectic manifold

5.3 Symplectic and Hamiltonian vector fields, Poisson bracket

5.4 Poission manifold and symplectic leaves

5.5 Homogeneous symplectic manifold and the reduced phase space

5.6 Contact manifold

Notations and Formulae

Exercises

6 Complex Manifolds

6.1 Complex structure of manifolds, almost complex manifolds

6.2 Integrable condition of almost complex structure

6.3 Hermitian manifold

6.4 Kahler manifold

6.5 Connections on complex manifold

6.6 Riemannian symmetric space, its Kahler structure and nonlinear real ization

6.7 Nonlinear a-models, soliton solutions and their geometric meaning

Notations and Formulae

Exercises

7 Homology of Manifolds

7.1 Homotopic mapping and manifolds with the same homotopy type

7.2 Singular homology group

7.3 General homology group and universal coefficient theorem

……

8Homotopy of Manifold,Fibre Bundle,Classification of Fibre Bun-dles

9 Differential Geometry of Fibre Bundle,Yang-Mills Gauge Theory

10 Characteristic Classes

11 The Atiyah-Singer Index Theorem

12 Index Theorem on Manifold With Boundary and on Open Infinite Manifold

13 Family Index Theorem,Topological properties of Quantum Gauge Theory

14 Noncommutative Geomitry,Quantum Group,and q-deformation of Chern-Characters

Appendix

Refernces

Index

 
 
免责声明:本文为网络用户发布,其观点仅代表作者个人观点,与本站无关,本站仅提供信息存储服务。文中陈述内容未经本站证实,其真实性、完整性、及时性本站不作任何保证或承诺,请读者仅作参考,并请自行核实相关内容。
2023年上半年GDP全球前十五强
 百态   2023-10-24
美众议院议长启动对拜登的弹劾调查
 百态   2023-09-13
上海、济南、武汉等多地出现不明坠落物
 探索   2023-09-06
印度或要将国名改为“巴拉特”
 百态   2023-09-06
男子为女友送行,买票不登机被捕
 百态   2023-08-20
手机地震预警功能怎么开?
 干货   2023-08-06
女子4年卖2套房花700多万做美容:不但没变美脸,面部还出现变形
 百态   2023-08-04
住户一楼被水淹 还冲来8头猪
 百态   2023-07-31
女子体内爬出大量瓜子状活虫
 百态   2023-07-25
地球连续35年收到神秘规律性信号,网友:不要回答!
 探索   2023-07-21
全球镓价格本周大涨27%
 探索   2023-07-09
钱都流向了那些不缺钱的人,苦都留给了能吃苦的人
 探索   2023-07-02
倩女手游刀客魅者强控制(强混乱强眩晕强睡眠)和对应控制抗性的关系
 百态   2020-08-20
美国5月9日最新疫情:美国确诊人数突破131万
 百态   2020-05-09
荷兰政府宣布将集体辞职
 干货   2020-04-30
倩女幽魂手游师徒任务情义春秋猜成语答案逍遥观:鹏程万里
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案神机营:射石饮羽
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案昆仑山:拔刀相助
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案天工阁:鬼斧神工
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案丝路古道:单枪匹马
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案镇郊荒野:与虎谋皮
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案镇郊荒野:李代桃僵
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案镇郊荒野:指鹿为马
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案金陵:小鸟依人
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案金陵:千金买邻
 干货   2019-11-12
 
推荐阅读
 
 
>>返回首頁<<
 
靜靜地坐在廢墟上,四周的荒凉一望無際,忽然覺得,淒涼也很美
© 2005- 王朝網路 版權所有