分享
 
 
 

非线性工作手册:应用C++、Java 与符号C++程序的浑沌、分形、细胞自动机、神经网络、遗传算法、基因表达编程、支持向量机、子波、隐马可NONLINEAR WORKBOOK, THE

非线性工作手册:应用C++、Java 与符号C++程序的浑沌、分形、细胞自动机、神经网络、遗传算法、基因表达编程、支持向量机、子波、隐马可NONLINEAR WORKBOOK, THE  点此进入淘宝搜索页搜索
  特别声明:本站仅为商品信息简介,并不出售商品,您可点击文中链接进入淘宝网搜索页搜索该商品,有任何问题请与具体淘宝商家联系。
  參考價格: 点此进入淘宝搜索页搜索
  分類: 图书,进口原版书,科学与技术 Science & Techology ,

作者: Willi-Hans Steeb 著

出 版 社: Penguin

出版时间: 1999-12-1字数:版次: 1页数: 585印刷时间: 1999/11/01开本:印次:纸张: 胶版纸I S B N : 9789810240257包装: 精装内容简介

The study of nonlinear dynamical systems has advanced tremendously in the last 20 years, making a big impact on science and technology. This book provides all the techniques and methods used in nonlinear dynamics. The concepts and underlying mathematics are discussed in detail.

The numerical and symbolic methods are implemented in C++, SymbolicC++ and Java. Object-oriented techniques are also applied. The book contains more than 150 ready-to-run programs.

The text has also been designed for a one-year course at both the junior and senior levels in nonlinear dynamics. The topics discussed in the book are part of e-learning and distance learning courses conducted by the International School for Scientific Computing.

目录

Preface

1 Nonlinear and Chaotic Maps

1.1 One-Dimensional Maps

1.1.1 Exact and Numerical Trajectories

1.1.2 Fixed Points and Stability

1.1.3 Invariant Density

1.1.4 Liapunov Exponent

1.1.5 Autocorrelation Function

1.1.6 Discrete Fourier Transform

1.1.7 Fast Fourier Transform

1.1.8 Logistic Map and Liapunov Exponent for r C [3,4]

1.1.9 Logistic Map and Bifurcation Diagram

1.1.10 Random Number Map and Invariant Density

1.1.11 Random Number Map and Random Integration . . .

1.1.12 Circle Map and Rotation Number

1.1.13 Newton Method

1.1.14 Feigenbaum's Constant

1.1.15 Symbolic Dynamics

1.2 Two-Dimensional Maps

1.2.1 Introduction

1.2.2 Phase Portrait

1.2.3 Fixed Points and Stability

1.2.4 Liapunov Exponents

1.2.5 Correlation Integral

1.2.6 Capacity

1.2.7 Hyperchaos

1.2.8 Domain of Attraction

1.2.9 Newton Method in the Complex Domain

1.2.10 Newton Method in Higher Dimensions

1.2.11 Ruelle-Takens-Newhouse Scenario

2 Time Series Analysis

2.1 Introduction

2.2 Correlation Coefficient

2.3 Liapunov Exponent from Time Series

2.3.1 Jacobian Matrix Estimation Algorithm

2.3.2 Direct Method

2.4 Hurst Exponent

2.4.1 Introduction

2.4.2 Algorithm for the Hurst Exponent

2.5 Complexity

3 Autonomous Systems in the Plane

3.1 Classification of Fixed Points

3.2 Homoclinic Orbit

3.3 Pendulum

3.4 Limit Cycle Systems

3.5 Lotka-Volterra Systems

4 Nonlinear Hamilton Systems

4.1 Hamilton Equations of Motion

4.1.1 Hamilton System and Variational Equation

4.2 Integrable Hamilton Systems

4.2.1 Hamilton Systems and First Integrals

4.2.2 Lax Pair and Hamilton Systems

4.2.3 Floquet Theory

4.3 Chaotic Hamilton Systems

4.3.1 H@non-Heiles Hamilton Function and Trajectories . . .

4.3.2 H@non-Heiles and Surface of Section Method

4.3.3 Quartic Potential and Surface of Section Technique . .

5 Nonlinear Dissipative Systems

5.1 Fixed Points and Stability

5.2 Trajectories

5.3 Phase Portrait

5.4 Liapunov Exponents

5.5 Generalized Lotka-Volterra Model

5.6 Hyperchaotic Systems

5.7 Hopf Bifurcation

5.8 Time-Dependent First Integrals

6 Nonlinear Driven Systems

6.1 Introduction

6.2 Driven Anharmonic Systems

6.2.1 Phase Portrait

6.2.2 Poincare Section

6.2.3 Liapunov Exponent

6.2.4 Autocorrelation Function

6.2.5 Power Spectral Density

6.3 Driven Pendulum

6.3.1 Phase Portrait

……

7 Controlling and Synchronization of Chaos

8 Fractals

9 Cellular Automata

10 Solving Differential Equations

11 Neural Networks

12 Genetic Algorithms

13 Fuzzy Sets and Fuzzy Logic

Bibliography

Index

 
 
免责声明:本文为网络用户发布,其观点仅代表作者个人观点,与本站无关,本站仅提供信息存储服务。文中陈述内容未经本站证实,其真实性、完整性、及时性本站不作任何保证或承诺,请读者仅作参考,并请自行核实相关内容。
2023年上半年GDP全球前十五强
 百态   2023-10-24
美众议院议长启动对拜登的弹劾调查
 百态   2023-09-13
上海、济南、武汉等多地出现不明坠落物
 探索   2023-09-06
印度或要将国名改为“巴拉特”
 百态   2023-09-06
男子为女友送行,买票不登机被捕
 百态   2023-08-20
手机地震预警功能怎么开?
 干货   2023-08-06
女子4年卖2套房花700多万做美容:不但没变美脸,面部还出现变形
 百态   2023-08-04
住户一楼被水淹 还冲来8头猪
 百态   2023-07-31
女子体内爬出大量瓜子状活虫
 百态   2023-07-25
地球连续35年收到神秘规律性信号,网友:不要回答!
 探索   2023-07-21
全球镓价格本周大涨27%
 探索   2023-07-09
钱都流向了那些不缺钱的人,苦都留给了能吃苦的人
 探索   2023-07-02
倩女手游刀客魅者强控制(强混乱强眩晕强睡眠)和对应控制抗性的关系
 百态   2020-08-20
美国5月9日最新疫情:美国确诊人数突破131万
 百态   2020-05-09
荷兰政府宣布将集体辞职
 干货   2020-04-30
倩女幽魂手游师徒任务情义春秋猜成语答案逍遥观:鹏程万里
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案神机营:射石饮羽
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案昆仑山:拔刀相助
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案天工阁:鬼斧神工
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案丝路古道:单枪匹马
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案镇郊荒野:与虎谋皮
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案镇郊荒野:李代桃僵
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案镇郊荒野:指鹿为马
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案金陵:小鸟依人
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案金陵:千金买邻
 干货   2019-11-12
 
推荐阅读
 
 
>>返回首頁<<
 
靜靜地坐在廢墟上,四周的荒凉一望無際,忽然覺得,淒涼也很美
© 2005- 王朝網路 版權所有