Discrete Mathematics with Applications(Third Edition)离散数学及其应用(影印版)(第3版)

分類: 图书,自然科学,数学,代数 数论 组合理论,
作者: (美)苏杉娜(Susanna,S.E.)著
出 版 社: 高等教育出版社
出版时间: 2005-3-1字数: 500000版次: 1页数: 775印刷时间: 2005/03/01开本: 16开印次: 1纸张: 胶版纸I S B N : 9787040162301包装: 平装内容简介
本书从Thomson Learning出版公司引进。本书内容包括:复合陈述中的逻辑,定量陈述中的逻辑,基础数论及证明方法,数理推断及序列,集合论,计算和概率,函数,递归,运算法则及效率,关系,图和树,常规表达式和自动控制。
本书可作为高等院校理工科专业学生作为离散数学双语教材使用,与其同类教材相比;本书有以下几个突出的特点:1.着重逻辑推理;2.以螺旋前进的方式介绍并运用概念,便于学生了解及进一步掌握;3.大量的图表便于学生直观理解;4.习题配置合理,书后给出了习题答案.5.有与本书配套的网络资源。
本书叙述详尽、语言表达流畅,适合于理工科各专业学生作为双语教材使用,也可供教师教学参考。
目录
Chapter 1 The Logic of Compound Statements
1.1 LogicalForm and LogicalEquivalence
1.2 Conditional Statements
1.3 Valid andInvalid Arguments
1.4 Application:Digital Logic Circuits
1.5 Application:Number Systems and Circuits for Addition
Chapter 2 The Logic of Quantified Statements
2.1 Introduction to Predicates and Quantified Statements /
2.2 Introduction to Predicates and Quantified Statements II
2.3 Statements Containing Multiple Quantifiers
2.4 Arguments with Quantified Statements 111
Chapter 3 Elementary Number Theoryand Methods ofProof
3.1 Direct Proofand Counterexample h Introduction
3.2 Direct Proofand Counterexample II Rational Numbers
3.3 Direct Proof and Counterexample IIh Divisibility
3.4 Direct Proof and Counterexample IV: Division into Cases and the Quotient-Remainder Theorem
3.5 Direct Proofand Counterexample V:Floorand Ceiling
3.6 Indirect Argument:Contradiction and Contraposition
3.7 Two Classica|Theorems
3.8 Application:Algorithms
Chapter 4 Sequences and MathematicalInduction
4.1 Sequences
4.2 Mathematical Induction,
4.3 Mathematical Induction II
4.4 Strong Mathematical Inductiopand the Well-Ordering Principle
4.5 Application:Correctness ofAlgorithms
Chapter 5 Set Theory
5.1 Basic Definitions of Set Theory
5.2 Properties of Sets
5.3 Disproofs,AlgebraicProofs.andBooleanAlgebras
5.4 Russell~Paradox and the Halting Problem
Chapter 6 Countingand Probability
6.1 Introduction
6.2 Possibility Trees and the Multiplication Rule
6.3 Counting Elements of Disjoint Sets:The Addition Rule
6.4 Counting Subsets of a Set:Combinations
6.5 r-Combinations with Repetition AIIowed
6.6 The Algebra of Combinations
6.7 The Binomia|Theofem
6.8 Probability Axioms and Expected Value
6.9 Conditional Probability,Bayes"Formula,and Independent Evenrs
Chapter 7 Functions
7.1 Functions Defined on General Sets
7.2 One-to-One and Onto,Inverse Functions
7.3 Application:The Pigeonhole Principle
7.4 Composition of Functions
7.5 Cardinality with Applications to Computability
Chapter 8 Recursion
8.1 Recursively Defined Sequences
8.2 Solving Recurrence Relations by Iteration
8.3 Second-Order Linear Homogenous Recurrence Relations
8.4 General Recursive Definitions
Chapter 9 The EfficiencyofAlgorithms
9. 1 Real-Valued Functions ofa Real Variable and Their Graphs
9.2 Ο.Ω.andΘNotationS
9.3 Application:Efficiency ofAlgorithms/
9.4 Exponential and Logarithmic Functions:Graphs andOrders
9.5 Application:Efficiency ofAlgorithms II
Chapter 10 Relations
10.1 Relations on Sets
10.2 Reflexivity,Symmetry,and Transitivity
10.3 Equivalence Relations
10.4 Modular Arithmetic with Applications to Cryptography
10.5 Partia|Order Relations
Chapter 11 Graphs and Trees
11.1 Graphs:An Introduction
11.2 Paths and Circuits
11.3 Matrix Representations of Graphs
11.4 Isomorphism of Graphs
11.5 Trees
11.6 Spanning Trees
Chapter 12 RegularExpressionsandFinite.StateAutomata
12.1 Forma|Languages and Regular Expressions
12.2 Finite-State Automata
12.3 Simplifying Finite-State Automata
AppendixA Properties ofthe Real Numbers A-1
Appendix B Solutions and Hints to Selected Exercises A-4