统计力学(第二版)(影印版)

分類: 图书,自然科学,物理学,理论物理学,
作者: (德)施瓦布(Schwabl.F) 编著
出 版 社: 科学出版社
出版时间: 2008-2-1字数:版次: 1页数: 577印刷时间:开本: 16开印次:纸张:I S B N : 9787030209412包装: 精装内容简介
本书是经典的《统计力学》的修订版,包括平衡和非平衡统计物理的基本理论。除了在微正则密度矩阵单一假设下的平衡统计和热力学的演绎推理外,本书还重点论述了非平衡统计中的一些重要的原理。书中的计算都提供了详细的推导过程,每章后面附有习题,可以帮助学生巩固他们对教材的理解。除基础知识外,本书还论述了本领域的普适性及其应用的多样性,还包括一些新的领域,如重正化群,逾渗,运动的随机方程及其在临界动力学中的应用,动理学理论等,同时还讨论了不可逆论的基本原理。本书适用于掌握基本的量子力学知识的读者,可供物理学和相关理工科专业的高年级学生阅读参考。
目录
1.Basic Principles
1.1 Introduction
1.2 A Brief Excursion into Probability Theory
1.2.1 Probability Density and Characteristic.Functions
1.2.2 The Central Limit Theorem.
1.3 Ensembles in Classical Statistics.
1.3.1 Phase Space and Distribution Functions
1.3.2 The Liouville Equation
1.4 Quantum Statistics
1.4.1 The Density Matrix for Pure and Mixed Ensembles
1.4.2 The Von Neumann Equation.
*1.5 Additional Remarks
*1.5.1 The Binomial and the Poisson Distributions
*1.5.2 Mixed Ensembles and the Density Matrix of Subsystems
Problems
2.Equilibrium Ensembles
2.1 Introductory Remarks
2.2Microcanonical Ensembles
2.2.1Microcanonical Distribution Functions and Density Matrices
2.2.2 The Classical Ideal Gas
*2.2.3 Quantum.mechanical Harmonic Oscillators and Spin Systems
2.3 Entropy
2.3.1 General Definition
2.3.2 An Extremal Property of the Entropy
2.3.3 Entropy ofthe Microcanonical Ensemble
2.4 Temperature and Pressure
2.4.1 Systems in Contact:the Energy Distribution Function Definition of the Temperature
2.4.20n the Widths of the Distribution Functions of Macroscopic Quantities
2.4.3 External Parameters:Pressure
2.5 Properties of Some Non-interacting Systems
2.5.1 The Ideal Gas
*2.5.2 Non-interacting Quantum Mechanical Harmonic Oscillators and Spins
2.6 The Canonical Ensemble
2.6.1The Density Matrix
2.6.2Examples:the Maxwell Distribution and the Barometric Pressure Formula
2.6.3The Entropy of the Canonical Ensemble and Its Extremal Values
2.6.4 The Virial Theorem and the Equipartition Theorem
2.6.5 Thermodynamic Quantities in the Canonical Ensemble
2.6.6 Additional Properties of the Entropy
2.7 The Grand Canonical Ensemble
2.7.1Systems with Particle Exchange
2.7.2 The Grand Canonical Density Matrix
2.7.3 Thermodynamic Quantities
2.7.4 The Grand Partition Function for the Classical Ideal Gas
*2.7.5The Grand Canonical Density Matrix in Second Quantization
Problems
3.Thermodynamics
3.1 Potentials and LaWS of Equilibrium Thermodynamics
3.1.1 Definitions
3.1.2 The Legendre Transformation
3.1.3The Gibbs-Duhem Relation in Homogeneous Systems
3.2 Derivatives of Thermodynamic Quantities
3.2.1 Definitions
3.2.2 Integrability and the Maxwell Relations
3.2.3 Jacobians
3.2.4 Examples
3.3Fluctuations and Thermodynamic Inequalities.
3.3.1 Fluctuations
3.3.2 Inequalities
3.4Absolute Temperature and Empirical Temperatures
3.5 Thermodynamic Processes
3.5.1Thermodynamic Concepts
3.5.2The Irreversible Expansion of a Gas the Gay-Lussac Experiment
3.5.3The Statistical Foundation of Irreversibility
3.5.4Reversible Processes
3.5.5 The Adiabatic Equation
……
3.Thermodynamics
4.Ideal Quantum Gases
5.Real Gases,Liquids,and Solutions
6.Magnetism
7.Phase Transitions,Renormalization Group Theroy,and Percolation
8.Brownian Motion,Equations of Motion and the Fokker-Planck Equations
9.The Boltzmann Equation
10.Irreversibilty and the Approach to Equilibrium
Appendix
Subject Index