分享
 
 
 

Uncertain Judgements: Eliciting Expert Probabilities不确定判断:引发专家概率

Uncertain Judgements: Eliciting Expert Probabilities不确定判断:引发专家概率  点此进入淘宝搜索页搜索
  特别声明:本站仅为商品信息简介,并不出售商品,您可点击文中链接进入淘宝网搜索页搜索该商品,有任何问题请与具体淘宝商家联系。
  參考價格: 点此进入淘宝搜索页搜索
  分類: 图书,进口原版书,科学与技术 Science & Techology ,

作者:

出 版 社:

出版时间: 2006-9-1字数:版次:页数: 321印刷时间: 2006/09/01开本: 16开印次:纸张: 胶版纸I S B N : 9780470029992包装: 精装内容简介

Elicitation is the process of extracting expert knowledge about some unknown quantity or quantities, and formulating that information as a probability distribution. Elicitation is important in situations, such as modelling the safety of nuclear installations or assessing the risk of terrorist attacks, where expert knowledge is essentially the only source of good information. It also plays a major role in other contexts by augmenting scarce observational data, through the use of Bayesian statistical methods. However, elicitation is not a simple task, and practitioners need to be aware of a wide range of research findings in order to elicit expert judgements accurately and reliably. Uncertain Judgements introduces the area, before guiding the reader through the study of appropriate elicitation methods, illustrated by a variety of multi-disciplinary examples.

作者简介

Professor Anthony O’Hagan is the Director of The Centre for Bayesian Statistics in Health Economics at the University of Sheffield. The Centre is a collaboration between the Department of Probability and Statistics and the School of Health and Related Research (ScHARR). The Department of Probability and Statistics is internationally respected for its research in Bayesian statistics, while ScHARR is one of the leading UK centres for economic evaluation.

Prof O’Hagan is an internationally leading expert in Bayesian Statistics.

Co-authors:

Professor Paul Gathwaite – Open University, Prof of Statistics, Maths and Computing.

Dr Jeremy Oakley – Sheffield University.

目录

Preface

1 Fundamentals of Probability and Judgement

1.1 Introduction

1.2 Probability and ehcltatlon

1.2.1 Probability

1.2.2 Random variables and probability distributions

1.2.3 Summaries of distributions

1.2.4 Joint distributions

1.2.5 Bayes' Theorem

1.2.6 Elicitation

1.3 Uncertainty and the interpretation of probability

1.3.1 Aleatory and epistemic uncertainty

1.3.2 Frequency and personal probabilities

1.3.3 An extended example

1.3.4 Implications for elicitation

1.4 Elicitation and the psychology of judgement

1.4.1 Judgement - absolute or relative?

1.4.2 Beyond perception

1.4.3 Implications for elicitation

1.5 Of what use are such judgements?

1.5.1 Normative theories of probability

1.5.2 Coherence

1.5.3 Do elicited probabilities have the desired interpretation?

1.6 Conclusions

1.6.1 Elicitation practice

1.6.2 Research questions

2The Elicitation Context

2.1 How and who?

2.1.1 Choice of format

2.1.2 What is an expert?

2.2 The elicitation process

2.2.1 Roles within the elicitation process

2.2.2 A model for the elicitation process

2.3 Conventions in Chapters 3 to 9

2.4 Conclusions

2.4.1 Elicitation practice

2.4.2 Research question

3 The Psychology of Judgement Under Uncertainty

3.1 Introduction

3.1.1 Why psychology?

3.1.2 Chapter overview

3.2 Understanding the task and the expert

3.2.1 Cognitive capabilities: the proper view of human informa- tion processing?

3.2.2 Constructive processes: the proper view of the process?

3.3 Understanding research on human judgement

3.3.1 Experts versus the rest: the proper focus of research?

3.3.2 Early research on subjective probability: 'conservatism' in Bayesian probability revision

3.4 The heuristics and biases research programme

3.4.1 Availability

3.4.2 Representativeness

3.4.3 Do frequency representations remove the biases attributed to availability and representativeness?

3.4.4 Anchoring-and-adjusting

3.4.5 Support theory

3.4.6 The affect heuristic

3.4.7 Critique of the heuristics and biases approach

3.5 Experts and expertise

3.5.1 The heuristics and biases approach

3.5.2 The cognitive science approach

3.5.3 'The middle way'

3.6 Three meta-theories of judgement

3.6.1 The cognitive continuum

3.6.2 The inside versus the outside view

3.6.3 The naive intuitive statistician metaphor

3.7 Conclusions

3.7.1 Elicitation practice

3.7.2 Research questions

4The Eiicitation of Probabilities

4. 1 Introduction

4.2 The calibration of subjective probabilities

4.2.1 Research methods in calibration research

……

5Eliciting Distributions-General

6 Eliciting and Fitting a Parametric Distribution

7 Elicting Distributions-Uncertainty and Imprecision

8 Evaluating Elictation

9 Multiple Experts

10 Published Examples of the Formal Elicitation of Expert Opinion

11 Guidance on Best Practice

12 Areas for Research

Glossary

Bibliography

Author Index

Index

 
 
免责声明:本文为网络用户发布,其观点仅代表作者个人观点,与本站无关,本站仅提供信息存储服务。文中陈述内容未经本站证实,其真实性、完整性、及时性本站不作任何保证或承诺,请读者仅作参考,并请自行核实相关内容。
2023年上半年GDP全球前十五强
 百态   2023-10-24
美众议院议长启动对拜登的弹劾调查
 百态   2023-09-13
上海、济南、武汉等多地出现不明坠落物
 探索   2023-09-06
印度或要将国名改为“巴拉特”
 百态   2023-09-06
男子为女友送行,买票不登机被捕
 百态   2023-08-20
手机地震预警功能怎么开?
 干货   2023-08-06
女子4年卖2套房花700多万做美容:不但没变美脸,面部还出现变形
 百态   2023-08-04
住户一楼被水淹 还冲来8头猪
 百态   2023-07-31
女子体内爬出大量瓜子状活虫
 百态   2023-07-25
地球连续35年收到神秘规律性信号,网友:不要回答!
 探索   2023-07-21
全球镓价格本周大涨27%
 探索   2023-07-09
钱都流向了那些不缺钱的人,苦都留给了能吃苦的人
 探索   2023-07-02
倩女手游刀客魅者强控制(强混乱强眩晕强睡眠)和对应控制抗性的关系
 百态   2020-08-20
美国5月9日最新疫情:美国确诊人数突破131万
 百态   2020-05-09
荷兰政府宣布将集体辞职
 干货   2020-04-30
倩女幽魂手游师徒任务情义春秋猜成语答案逍遥观:鹏程万里
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案神机营:射石饮羽
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案昆仑山:拔刀相助
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案天工阁:鬼斧神工
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案丝路古道:单枪匹马
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案镇郊荒野:与虎谋皮
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案镇郊荒野:李代桃僵
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案镇郊荒野:指鹿为马
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案金陵:小鸟依人
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案金陵:千金买邻
 干货   2019-11-12
 
推荐阅读
 
 
>>返回首頁<<
 
靜靜地坐在廢墟上,四周的荒凉一望無際,忽然覺得,淒涼也很美
© 2005- 王朝網路 版權所有