分享
 
 
 

Applied statistical decision theory应用统计决策论

Applied statistical decision theory应用统计决策论  点此进入淘宝搜索页搜索
  特别声明:本站仅为商品信息简介,并不出售商品,您可点击文中链接进入淘宝网搜索页搜索该商品,有任何问题请与具体淘宝商家联系。
  參考價格: 点此进入淘宝搜索页搜索
  分類: 图书,进口原版书,经管与理财 Business & Investing ,

作者: Howard Raiffa,Robert Schlaifer著

出 版 社: 吉林长白山

出版时间: 2000-5-1字数:版次:页数: 353印刷时间: 2000/05/01开本: 16开印次:纸张: 胶版纸I S B N : 9780471383499包装: 平装内容简介

"In the field of statistical decision theory, Raiffa and Schlaifer have sought to develop new analytic techniques by which the modern theory of utility and subjective probability can actually be applied to the economic analysis of typical sampling problems."

—From the foreword to their classic work Applied Statistical Decision Theory. First published in the 1960s through Harvard University and MIT Press, the book is now offered in a new paperback edition from Wiley

目录

Foreword

Preface and Introduction

Part I: Experimentation and Decision: General Theory

1. The Problem and the Two Basic Modes of Analysis

1. Description of the Decision Problem

1: The basic data; 2: Assessment of probability measures; 3: Example;

4: The general decision problem as a game.

2. Analysis in Extensive Form

1: Backwards induction; 2: Examplc.

3. Analysis in Normal Form

1: Decision rules; 2: Performance, error, and utility characteristics; 3:Ex-ample; 4: Equivalence of the extensive and normal form; 5: Bayesian deci- sion theory as a completion of classical theory; 6: Informal choice of a decision rule.

4. Combination of Formal and Informal Analysis

1: Unknown costs; cutting the decision tree; 2: Incomplete analysis of the decision tree; 3: Example.

5. Prior Weights and Consistent Behavior

2. Sufficient Statistics and Noninformative Stopping

1. Introduction

1: Simplifying assumptions; 2: Bayes' theorem; kernels

2. Sufficiency

1: Bayesian definition of sufficiency; 2: Identification of sufficient statistics;

3: Equivalence of the Bayesian and classical definitions of sufficiency; 4: Nuisance parameters and marginal sufficiency.

3. Noninformative Stopping

1: Data-generating processes and stopping processes; 2: Likelihood of a sample; 3: Noninformative stopping processes; 4: Contrast between the Bayesian and classical treatments of stopping; 5: Summary.

3. Conjugate Prior Distributions

1. Introduction; Assumptions and Definitions

1: Desiderata for a family of prior distributions; 2: Sufficient statistics of fixed dimensionality.

2. Conjugate Prior Distributions

1: Use of the sample kernel as a prior kernel; 2: The posterior distribution when the prior distribution is natural-conjugate; 3: Extension of the domain of the parameter; 4: Extension by introduction of a new parameter; 5: Con- spectus of natural-conjugate densities.

3. Choice and Interpretation of a Prior Distribution

1: Distributions fitted to historical relative frequencies; 2: Distributions fitted to subjective betting odds; 3: Comparison of the weights of prior and sample evidence; 4: "Quantity of information" and "vague" opinions;

5: Sensitivity analysis; 6: Scientific reporting.

4. Analysis in Extensive Form when the Prior Distribution and Sample Likelihood are Conjugate

1: Definitions of terminal and preposterior analysis; 2: Terminal analysis;

3: Preposterior analysis.

Part II: Extensive-Form Analysis When Sampling and Terminal Utilities Are Additive

4. Additive Utility, Opportunity Loss, and the Value of Information:Introduction to Part II

1. Basic Assumptions

2. Applicability of Additive Utilities

3. Computation of Expected Utility

4. Opportunity Loss

1: Definition of opportunity loss; 2: Extensive-form analysis using oppor-tunity loss instead of utility; 3: Opportunity loss when terminal and sam- piing utilities are additive; 4: Direct assessment of terminal opportunity losses; 5: Upper bounds on optimal sample size.

5. The Value of Information

l: The value of perfect information; 2: The value of sample information and the net gain of sampling; 3: Summary of relations among utilities, op- portunity losses, and value of information.

5A. Linear Terminal Analysis

1. Introduction

1: The transformed state description co; 2: Terminal analysis.

2. Expected Value of Perfect Information when w is Scalar

1: Two-action problems; 2: Finite-action problems; 3: Evaluation of linear- loss integrals; 4: Examples.

3. Preposterior Analysis

1: The posterior mean as a random variable; 2: The expected value of sam- ple information.

4. The Prior Distribution of the Posterior Mean for Given e

1: Mean and variance of ~"; 2: Limiting behavior of the distribution; 3Limiting behavior of integrals when is scalar; 4: Exact distributions of;5: Aouroximations to the distribution of : 6: Examt)les.

……

part III:Distribution Theory

 
 
免责声明:本文为网络用户发布,其观点仅代表作者个人观点,与本站无关,本站仅提供信息存储服务。文中陈述内容未经本站证实,其真实性、完整性、及时性本站不作任何保证或承诺,请读者仅作参考,并请自行核实相关内容。
2023年上半年GDP全球前十五强
 百态   2023-10-24
美众议院议长启动对拜登的弹劾调查
 百态   2023-09-13
上海、济南、武汉等多地出现不明坠落物
 探索   2023-09-06
印度或要将国名改为“巴拉特”
 百态   2023-09-06
男子为女友送行,买票不登机被捕
 百态   2023-08-20
手机地震预警功能怎么开?
 干货   2023-08-06
女子4年卖2套房花700多万做美容:不但没变美脸,面部还出现变形
 百态   2023-08-04
住户一楼被水淹 还冲来8头猪
 百态   2023-07-31
女子体内爬出大量瓜子状活虫
 百态   2023-07-25
地球连续35年收到神秘规律性信号,网友:不要回答!
 探索   2023-07-21
全球镓价格本周大涨27%
 探索   2023-07-09
钱都流向了那些不缺钱的人,苦都留给了能吃苦的人
 探索   2023-07-02
倩女手游刀客魅者强控制(强混乱强眩晕强睡眠)和对应控制抗性的关系
 百态   2020-08-20
美国5月9日最新疫情:美国确诊人数突破131万
 百态   2020-05-09
荷兰政府宣布将集体辞职
 干货   2020-04-30
倩女幽魂手游师徒任务情义春秋猜成语答案逍遥观:鹏程万里
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案神机营:射石饮羽
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案昆仑山:拔刀相助
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案天工阁:鬼斧神工
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案丝路古道:单枪匹马
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案镇郊荒野:与虎谋皮
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案镇郊荒野:李代桃僵
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案镇郊荒野:指鹿为马
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案金陵:小鸟依人
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案金陵:千金买邻
 干货   2019-11-12
 
推荐阅读
 
 
>>返回首頁<<
 
靜靜地坐在廢墟上,四周的荒凉一望無際,忽然覺得,淒涼也很美
© 2005- 王朝網路 版權所有