分享
 
 
 

Adaptive approximation based control基于近似自适应的控制:神经系统的、模糊的与传统的自适应方法统一

Adaptive approximation based control基于近似自适应的控制:神经系统的、模糊的与传统的自适应方法统一  点此进入淘宝搜索页搜索
  特别声明:本站仅为商品信息简介,并不出售商品,您可点击文中链接进入淘宝网搜索页搜索该商品,有任何问题请与具体淘宝商家联系。
  參考價格: 点此进入淘宝搜索页搜索
  分類: 图书,进口原版书,计算机 Computers & Internet ,

作者: Jay A. Farrell 著

出 版 社: 吉林长白山

出版时间: 2006-4-1字数:版次: 1页数: 420印刷时间: 2006/04/01开本: 16开印次: 1纸张: 胶版纸I S B N : 9780471727880包装: 精装内容简介

A highly accessible and unified approach to the design and analysis of intelligent control systems

Adaptive Approximation Based Control is a tool every control designer should have in his or her control toolbox.

Mixing approximation theory, parameter estimation, and feedback control, this book presents a unified approach designed to enable readers to apply adaptive approximation based control to existing systems, and, more importantly, to gain enough intuition and understanding to manipulate and combine it with other control tools for applications that have not been encountered before.

The authors provide readers with a thought-provoking framework for rigorously considering such questions as:

What properties should the function approximator have?

Are certain families of approximators superior to others?

Can the stability and the convergence of the approximator parameters be guaranteed?

Can control systems be designed to be robust in the face of noise, disturbances, and unmodeled effects?

Can this approach handle significant changes in the dynamics due to such disruptions as system failure?

What types of nonlinear dynamic systems are amenable to this approach?

What are the limitations of adaptive approximation based control?

Combining theoretical formulation and design techniques with extensive use of simulation examples, this book is a stimulating text for researchers and graduate students and a valuable resource for practicing engineers.

作者简介:

JAY A. FARRELL, PhD, is Professor and former chair of the Department of Electrical Engineering at the University of California at Riverside. He was also principal investigator on projects involving intelligent and learning control systems for autonomous vehiclesat the Charles Stark Draper Laboratory, where he was awarded the Engineering Vice President's Best Technical Publication Award. He is the author of one other book and over 130 articles for technical publications.

目录

Preface

1 INTRODUCTION

1.1 Systems and Control Terminology

1.2 Nonlinear Systems

1.3 Feedback Control Approaches

1.3.1 Linear Design

1.3.2 Adaptive Linear Design

1.3.3 Nonlinear Design

1.3.4 Adaptive Approximation Based Design

1.3.5 Example Summary

1.4 Components of Approximation Based Control

1.4.1 Control Architecture

1.4.2 Function Approximator

1.4.3 Stable Training Algorithm

1.5 Discussion and Philosophical Comments

1.6 Exercises and Design Problems

2 APPROXIMATION THEORY

2.1 Motivating Example

2.2 Interpolation

2.3 Function Approximation

2.3.1 Off-line (Batch) Function Approximation

2.3.2 Adaptive Function Approximation

2.4 Approximator Properties

2.4.1 Parameter (Non)Linearity

2.4.2 Classical Approximation Results

2.4.3 Network Approximators

2.4.4 Nodal Processors

2.4.5 Universal Approximator

2.4.6 Best Approximator Property

2.4.7 Generalization

2.4.8 Extent of Influence Function Support

2.4.9 Approximator Transparency

2.4.10 Haar Conditions

2.4.11 Multivariable Approximation by Tensor Products

2.5 Summary

2.6 Exercises and Design Problems

3 APPROXIMATION STRUCTURES

3.1 Model Types

3.1.1 Physically Based Models

3.1.2 Structure (Model) Free Approximation

3.1.3 Function Approximation Structures

3.2 Polynomials

3.2.1 Description

3.2.2 Properties

3.3 Splines

3.3.1 Description

3.3.2 Properties

3.4 Radial Basis Functions

3.4.1 Description

3.4.2 Properties

3.5 Cerebellar Model Articulation Controller

3.5.1 Description

3.5.2 Properties

3.6 Multilayer Perceptron

3.6.1 Description

3.6.2 Properties

3.7 Fuzzy Approximation

3.7.1 Description

3.7.2 Takagi-Sugeno Fuzzy Systems

3.7.3 Properties

3.8 Wavelets

3.8.1 Multiresolution Analysis (MRA)

3.8.2 MRA Properties

3.9 Further Reading

3.10 Exercises and Design Problems

4 PARAMETER ESTIMATION METHODS

4.1 Formulation for Adaptive Approximation

4.1.1 Illustrative Example

4.1.2 Motivating Simulation Examples

4.1.3 Problem Statement

4.1.4 Discussion of Issues in Parametric Estimation

4.2 Derivation of Parametric Models

4.2.1 Problem Formulation for Full-State Measurement

4.2.2 Filtering Techniques

4.2.3 SPR Filtering

4.2.4 Linearly Parameterized Approximators

4.2.5 Parametric Models in State Space Form

4.2.6 Parametric Models of Discrete-Time Systems

4.2.7 Parametric Models of Input-Output Systems

4.3 Design of On-Line Learning Schemes

4.3.1 Error Filtering On-Line Learning (EFOL) Scheme

4.3.2 Regressor Filtering On-Line Learning (RFOL) Scheme

4.4 Continuous-Time Parameter Estimation

4.4.1 Lyapunov Based Algorithms

4.4.2 Optimization Methods

4.4.3 Summary

4.5 On-Line Learning: Analysis

4.5.1 Analysis of LIP EFOL scheme with Lyapunov Synthesis Method

4.5.2 Analysis of LIP RFOL scheme with the Gradient Algorithm

4.5.3 Analysis of LIP RFOL scheme with RLS Algorithm

4.5.4 Persistency of Excitation and Parameter Convergence

4.6 Robust Learning Algorithms

4.6.1 Projection modification

4.6.2 σ-modification

4.6.3 &epsis;-modification

4.6.4 Dead-zone modification

4.6.5 Discussion and Comparison

4.7 Concluding Summary

4.8 Exercises and Design Problems

5 NONLINEAR CONTROL ARCHITECTURES

5.1 Small-Signal Linearization

5.1.1 Linearizing Around an Equilibrium Point

5.1.2 Linearizing Around a Trajectory

5.1.3 Gain Scheduling

5.2 Feedback Linearization

5.2.1 Scalar Input-State Linearization

5.2.2 Higher-Order Input-State Linearization

5.2.3 Coordinate Transformations and Diffeomorphisms

5.2.4 Input-Output Feedback Linearization

5.3 Backstepping

5.3.1 Second order system

5.3.2 Higher Order Systems

5.3.3 Command Filtering Formulation

5.4 Robust Nonlinear Control Design Methods

5.4.1 Bounding Control

5.4.2 Sliding Mode Control

5.4.3 Lyapunov Redesign Method

5.4.4 Nonlinear Damping

5.4.5 Adaptive Bounding Control

5.5 Adaptive Nonlinear Control

5.6 Concluding Summary

5.7 Exercises and Design Problems

6 ADAPTIVE APPROXIMATION: MOTIVATION AND ISSUES

6.1 Perspective for Adaptive Approximation Based Control

6.2 Stabilization of a Scalar System

6.2.1 Feedback Linearization

6.2.2 Small-Signal Linearization

6.2.3 Unknown Nonlinearity with Known Bounds

6.2.4 Adaptive Bounding Methods

6.2.5 Approximating the Unknown Nonlinearity

6.2.6 Combining Approximation with Bounding Methods

6.2.7 Combining Approximation with Adaptive Bounding Methods

6.2.8 Summary

6.3 Adaptive Approximation Based Tracking

6.3.1 Feedback Linearization

6.3.2 Tracking via Small-Signal Linearization

6.3.3 Unknown Nonlinearities with Known Bounds

6.3.4 Adaptive Bounding Design

6.3.5 Adaptive Approximation of the Unknown Nonlinearities

6.3.6 Robust Adaptive Approximation

6.3.7 Combining Adaptive Approximation with Adaptive Bounding

6.3.8 Some Adaptive Approximation Issues

6.4 Nonlinear Parameterized Adaptive Approximation

6.5 Concluding Summary

6.6 Exercises and Design Problems

7 ADAPTIVE APPROXIMATION BASED CONTROL: GENERAL THEORY

7.1 Problem Formulation

7.1.1 Trajectory Tracking

7.1.2 System

7.1.3 Approximator

7.1.4 Control Design

7.2 Approximation Based Feedback Linearization

7.2.1 Scalar System

7.2.2 Input-State

7.2.3 Input-Output

7.2.4 Control Design Outside the Approximation Region D

7.3 Approximation Based Backstepping

7.3.1 Second Order Systems

7.3.2 Higher Order Systems

7.3.3 Command Filtering Approach

7.3.4 Robustness Considerations

7.4 Concluding Summary

7.5 Exercises and Design Problems

8 ADAPTIVE APPROXIMATION BASED CONTROL FOR FIXED-WING AIRCRAFT

8.1 Aircraft Model Introduction

8.1.1 Aircraft Dynamics

8.1.2 Non-dimensional Coefficients

8.2 Angular Rate Control for Piloted Vehicles

8.2.1 Model Representation

8.2.2 Baseline Controller

8.2.3 Approximation Based Controller

8.2.4 Simulation Results

8.3 Full Control for Autonomous Aircraft

8.3.1 Airspeed and Flight Path Angle Control

8.3.2 Wind-axes Angle Control

8.3.3 Body Axis Angular Rate Control

8.3.4 Control Law and Stability Properties

8.3.5 Approximator Definition

8.3.6 Simulation Analysis

8.4 Conclusions

8.5 Aircraft Notation

Appendix A: Systems and Stability Concepts

A.1 Systems Concepts

A.2 Stability Concepts

A.2.1 Stability Definitions

A.2.2 Stability Analysis Tools

A.3 General Results

A.4 Prefiltering

A.5 Other Useful Results

A.5.1 Smooth Approximation of the Signum function

A.6 Problems

Appendix B: Recommended Implementation and Debugging Approach

References

Index

 
 
免责声明:本文为网络用户发布,其观点仅代表作者个人观点,与本站无关,本站仅提供信息存储服务。文中陈述内容未经本站证实,其真实性、完整性、及时性本站不作任何保证或承诺,请读者仅作参考,并请自行核实相关内容。
2023年上半年GDP全球前十五强
 百态   2023-10-24
美众议院议长启动对拜登的弹劾调查
 百态   2023-09-13
上海、济南、武汉等多地出现不明坠落物
 探索   2023-09-06
印度或要将国名改为“巴拉特”
 百态   2023-09-06
男子为女友送行,买票不登机被捕
 百态   2023-08-20
手机地震预警功能怎么开?
 干货   2023-08-06
女子4年卖2套房花700多万做美容:不但没变美脸,面部还出现变形
 百态   2023-08-04
住户一楼被水淹 还冲来8头猪
 百态   2023-07-31
女子体内爬出大量瓜子状活虫
 百态   2023-07-25
地球连续35年收到神秘规律性信号,网友:不要回答!
 探索   2023-07-21
全球镓价格本周大涨27%
 探索   2023-07-09
钱都流向了那些不缺钱的人,苦都留给了能吃苦的人
 探索   2023-07-02
倩女手游刀客魅者强控制(强混乱强眩晕强睡眠)和对应控制抗性的关系
 百态   2020-08-20
美国5月9日最新疫情:美国确诊人数突破131万
 百态   2020-05-09
荷兰政府宣布将集体辞职
 干货   2020-04-30
倩女幽魂手游师徒任务情义春秋猜成语答案逍遥观:鹏程万里
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案神机营:射石饮羽
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案昆仑山:拔刀相助
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案天工阁:鬼斧神工
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案丝路古道:单枪匹马
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案镇郊荒野:与虎谋皮
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案镇郊荒野:李代桃僵
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案镇郊荒野:指鹿为马
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案金陵:小鸟依人
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案金陵:千金买邻
 干货   2019-11-12
 
推荐阅读
 
 
>>返回首頁<<
 
靜靜地坐在廢墟上,四周的荒凉一望無際,忽然覺得,淒涼也很美
© 2005- 王朝網路 版權所有