分享
 
 
 

The calculus of variations变分法的计算

The calculus of variations变分法的计算  点此进入淘宝搜索页搜索
  特别声明:本站仅为商品信息简介,并不出售商品,您可点击文中链接进入淘宝网搜索页搜索该商品,有任何问题请与具体淘宝商家联系。
  參考價格: 点此进入淘宝搜索页搜索
  分類: 图书,进口原版书,科学与技术 Science & Techology ,

作者: Bruce van Brunt著

出 版 社:

出版时间: 2003-9-1字数:版次: 1页数: 290印刷时间: 2003/09/01开本: 16开印次: 1纸张: 胶版纸I S B N : 9780387402475包装: 精装内容简介

The calculus of variations has a long history of interaction with other branches of mathematics, such as geometry and differential equations, and with physics, particularly mechanics. More recently, the calculus of variations has found applications in other fields such as economics and electrical engineering. Much of the mathematics underlying control theory, for instance, can be regarded as part of the calculus of variations.This book is an introductory account of the calculus of variations suitable for advanced undergraduate and graduate students of mathematics, physics, or engineering. The mathematical background assumed of the reader is a course in multivariable calculus, and some familiarity with the elements of real analysis and ordinary differential equations. The book focuses on variational problems that involve one independent variable. The fixed endpoint problem and problems with constraints are discussed in detail. In addition, more advanced topics such as the inverse problem, eigenvalue problems, separability conditions for the Hamilton-Jacobi equation, and Noether's theorem are discussed. The text contains numerous examples to illustrate key concepts along with problems to help the student consolidate the material. The book can be used as a textbook for a one semester course on the calculus of variations, or as a book to supplement a course on applied mathematics or classical mechanics. Bruce van Brunt is Senior Lecturer at Massey University, New Zealand. He is the author of The Lebesgue-Stieltjes Integral, with Michael Carter, and has been teaching the calculus of variations to undergraduate and graduate students for several years.

目录

1 Introduction

1.1 Introduction

1.2 The Catenary and Brachystochrone Problems

1.2.1 The Catenary

1.2.2 Brachystochrones

1.3 Hamilton's Principle

1.4 Some Variational Problems from Geometry

1.4.1 Dido's Problem

1.4.2 Geodesics

1.4.3 Minimal Surfaces

1.5 Optimal Harvest Strategy

2 The First Variation

2.1 The Finite-Dimensional Case

2.1.1 Functions of One Variable

2.1.2 Functions of Several Variables

2.2 The Euler-Lagrange Equation

2.3 Some Special Cases

2.3.1 Case I: No Explicit y Dependence

2.3.2 Case II: No Explicit x Dependence

2.4 A Degenerate Case

2.5 Invariance of the Euler-Lagrange Equation

2.6 Existence of Solutions to the Boundary-Value Problem

3 Some Generalizations

3.1 Functionals Containing Higher-Order Derivatives

3.2 Several Dependent Variables

3.3 Two Independent Variables

3.4 The Inverse Problem

4 Isoperimetric Problems

4.1 The Finite-Dimensional Case and Lagrange Multipliers

4.1.1 Single Constraint

4.1.2 Multiple Constraints

4.1.3 Abnormal Problems

4.2 The Isoperimetric Problem

4.3 Some Generalizations on the Isoperimetric Problem

4.3.1 Problems Containing Higher-Order Derivatives

4.3.2 Multiple Isoperimetric Constraints

4.3.3 Several Dependent Variables

5 Applications to Eigenvalue Problems

5.1 The Sturm-Liouville Problem

5.2 The First Eigenvalue

5.3 Higher Eigenvalues

6 Holonomic and Nonholonomic Constraints

6.1 Holonomic Constraints

6.2 Nonholonomic Constraints

6.3 Nonholonomic Constraints in Mechanics

7 Problems with Variable Endpoints

7.1 Natural Boundary Conditions

7.2 The General Case

7.3 Tansversality Conditions

8 The Hamiltonin Formulation

8.1 The Legendre Transformation

8.2 Hamilton's Equations

8.3 Symplectic Maps

8.4 The Hamilton-Jacobi Equation

8.4.1 The General Problem

8.4.2 Conservative Systems

8.5 Separation of Variables

8.5.1 The Method of Additive Separation

8.5.2 Conditions for Separable Solutions

9 Noether's Theorem

9.1 Conservation Laws

9.2 Variational Symmetries

9.3 Noether's Theorem

9.4 Finding Varbational Symmetries

10 The Second Variation

10.1 The Finite-Dimensional Case

10.2 The Second Variation

10.3 The Legendre Condition

10.4 The Jacobi Necessary Condition

10.4.1 A Reformulation of the Second Variation

10.4.2 The Jacobi Accessory Equation

10.4.3 The Jacobi Necessary Condition

10.5 A Sufficient Condition

10.6 More on Conjugate Points

10.6.1 Finding Conjugate Points

10.6.2 A Geometrical Interpretation

10.6.3 Saddle Points

10.7 Convex Integrands

A Analysis and Differential Equations

A.1 Taylor's Theorem

A.2 The Implicit Function Theorem

A.3 Theory of Ordinary Differential Equations

B Function Spaces

B.1 Normed Spaces

B.2 Banach and Hilbert Spaces

References

Index

 
 
免责声明:本文为网络用户发布,其观点仅代表作者个人观点,与本站无关,本站仅提供信息存储服务。文中陈述内容未经本站证实,其真实性、完整性、及时性本站不作任何保证或承诺,请读者仅作参考,并请自行核实相关内容。
2023年上半年GDP全球前十五强
 百态   2023-10-24
美众议院议长启动对拜登的弹劾调查
 百态   2023-09-13
上海、济南、武汉等多地出现不明坠落物
 探索   2023-09-06
印度或要将国名改为“巴拉特”
 百态   2023-09-06
男子为女友送行,买票不登机被捕
 百态   2023-08-20
手机地震预警功能怎么开?
 干货   2023-08-06
女子4年卖2套房花700多万做美容:不但没变美脸,面部还出现变形
 百态   2023-08-04
住户一楼被水淹 还冲来8头猪
 百态   2023-07-31
女子体内爬出大量瓜子状活虫
 百态   2023-07-25
地球连续35年收到神秘规律性信号,网友:不要回答!
 探索   2023-07-21
全球镓价格本周大涨27%
 探索   2023-07-09
钱都流向了那些不缺钱的人,苦都留给了能吃苦的人
 探索   2023-07-02
倩女手游刀客魅者强控制(强混乱强眩晕强睡眠)和对应控制抗性的关系
 百态   2020-08-20
美国5月9日最新疫情:美国确诊人数突破131万
 百态   2020-05-09
荷兰政府宣布将集体辞职
 干货   2020-04-30
倩女幽魂手游师徒任务情义春秋猜成语答案逍遥观:鹏程万里
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案神机营:射石饮羽
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案昆仑山:拔刀相助
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案天工阁:鬼斧神工
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案丝路古道:单枪匹马
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案镇郊荒野:与虎谋皮
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案镇郊荒野:李代桃僵
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案镇郊荒野:指鹿为马
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案金陵:小鸟依人
 干货   2019-11-12
倩女幽魂手游师徒任务情义春秋猜成语答案金陵:千金买邻
 干货   2019-11-12
 
推荐阅读
 
 
>>返回首頁<<
 
靜靜地坐在廢墟上,四周的荒凉一望無際,忽然覺得,淒涼也很美
© 2005- 王朝網路 版權所有